Overview

- Last lecture
 - deMorgan's theorem
 - NAND and NOR
 - Canonical forms
 - Sum-of-products (minterms)
 - Product-of-sums (maxterms)
- Today's lecture
 - Logic simplification
 - Boolean cubes
 - Karnaugh maps

Logic-function simplification

- Key tool: The unifying theorem \(\rightarrow A(B' + B) = A \)
- The approach:
 - Find subsets of the ON-set where some variables don't change (the A's above) and others do (the B's above)
 - Eliminate the changing variables (the B's)

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(F = A'B' + A'B = A'(B' + B) = A' \)

Boolean cubes

- **Visualize** when we can apply the unifying theorem
 - \(n \) input variables = \(n \)-dimensional "cube"

<table>
<thead>
<tr>
<th>(X)</th>
<th>(Y)</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Mapping truth tables onto Boolean cubes

- **ON** set = solid nodes
- **OFF** set = empty nodes

Subcube (a line) comprises two nodes

A varies within the subcube; B does not

This subcube represents the literal \(B' \)
Logic minimization using Boolean cubes

- Uniting theorem = find reduced-dimensionality subcubes
- Example: Binary full-adder carry-out logic
 - On-set is covered by the OR of three 2-D subcubes

\[
\begin{array}{ccc|c}
A & B & C_{\text{in}} & \text{Cout} \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

\[
(A'+A)B_{\text{in}} + (A+B')C_{\text{in}} + AB(C_{\text{in}}'+C_{\text{in}}) = \text{Cout} = B_{\text{in}}C_{\text{in}} + AB + AC_{\text{in}}
\]

M-dimensional cubes in n-dimensional space

- In a 3-cube (three variables):
 - A 0-cube (a single node) yields a term in 3 literals
 - A 1-cube (a line of two nodes) yields a term in 2 literals
 - A 2-cube (a plane of four nodes) yields a term in 1 literal
 - A 3-cube (a cube of eight nodes) yields a constant term “1”

\[
F(A,B,C) = \Sigma m(4,5,6,7)
\]

On-set forms a square (a 2-D cube)
A is asserted (true) and unchanging
B and C vary
This subcube represents the literal A

Karnaugh maps

- Flat representation of Boolean cubes
 - Easy to use for 2–4 dimensions
 - Hard for 4–6 dimensions
 - Virtually impossible for 6+ dimensions
 - Use CAD tools

- Help visualize adjacencies
 - On-set elements that have one variable changing are adjacent
 - Unlike a truth-table
 - Visual way to apply the uniting theorem

K-map cell numbering

- Gray-code: Only one bit changes between cells
 - Example: 00 → 01 → 11 → 10

- Layout for 2–4 dimension K-maps:
Adjacencies

- Wrap-around at edges
 - First column to last column
 - Top row to bottom row

K-map minimization: 2 and 3 variables

\[F = B' \]

\[\text{Cout} = AB + BC\text{in} + AC\text{in} \]

\[F(A,B,C) = \Sigma m(0,4,5,7) = B'C + AC \]

K-map minimization (con’t)

- Obtain the complement by covering 0s with subcubes

\[F(A,B,C) = \Sigma m(0,4,5,7) = B'C + AC \]

\[F'(A,B,C) = \Sigma m(1,2,3,6) = A'C + BC' \]

K-map minimization: 4 variables

- Minimize \(F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15) \)
 - Find the least number of subcubes, each as large as possible, that cover the ON-set
Karnaugh map: 4-variable example (con’t)

- Minimize $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
- Answer: $F = C + A'B'D' + B'D'$

K-map class examples

$F(A,B,C,D) = \Sigma m(0,3,7,8,11,15)$
$F(A,B,C) = \Sigma m(0,3,6,7)$

$F(A,B,C,D) = ???$
$F'(A,B,C,D) = ???$

$F(A,B,C) = ???$
$F'(A,B,C) = ???$