Boolean algebra

- Last lecture
 - Binary numbers
 - Base conversion
 - Number systems
 - Twos-complement
 - A/D and D/A conversion

- Today’s lecture
 - Boolean algebra
 - Axioms
 - Useful laws and theorems
 - Simplifying Boolean expressions

Major topic: Combinational logic

- Axioms and theorems of Boolean algebra

- Logic functions and truth tables
 - AND, OR, Buffer, NAND, NOR, NOT, XOR, XNOR

- Gate logic
 - Networks of Boolean functions

- Canonical forms
 - Sum of products and product of sums

- Simplification
 - Boolean cubes and Karnaugh maps
 - Two-level simplification
Combinational versus sequential

- **Combinational**: Memoryless
 - Apply fixed inputs A, B
 - Wait for clock edge
 - Observe C
 - Wait for another clock edge
 - Observe C again: C will stay the same

- **Sequential**: With Memory
 - Apply fixed inputs A, B
 - Wait for clock edge
 - Observe C
 - Wait for another clock edge
 - Observe C again: C may be different

Boolean algebra

- A **Boolean algebra** comprises...
 - A set of elements B
 - Binary operators \{ + , \cdot \}
 - A unary operation \{ ' \}

- ...and the following axioms
 - 1. The set B contains at least two elements \{a, b\} with a ≠ b
 - 2. Closure: \(a + b \) is in B \(a \cdot b \) is in B
 - 3. Commutative: \(a + b = b + a \) \(a \cdot b = b \cdot a \)
 - 4. Associative: \(a + (b + c) = (a + b) + c \) \(a \cdot (b \cdot c) = (a \cdot b) \cdot c \)
 - 5. Identity: \(a + 0 = a \) \(a \cdot 1 = a \)
 - 6. Distributive: \(a + (b \cdot c) = (a + b) \cdot (a + c) \) \(a \cdot (b + c) = (a \cdot b) + (a \cdot c) \)
 - 7. Complementarity: \(a + a' = 1 \) \(a \cdot a' = 0 \)
Digital (binary) logic is a Boolean algebra

- Substitute
 - \{0, 1\} for B
 - AND for \(\cdot \) Boolean Product
 - OR for + Boolean Sum
 - NOT for \(' \)

- All the axioms hold for binary logic

- Definitions
 - Boolean function
 - Maps inputs from the set \{0,1\} to the set \{0,1\}
 - Boolean expression
 - An algebraic statement of Boolean variables and operators

AND, OR, Not

- AND \(X \cdot Y \)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- OR \(X + Y \)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- NOT \(\overline{X} \)

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Logic functions and Boolean algebra

◆ Any logic function that is expressible as a truth table can be written in Boolean algebra using +, •, and ' |

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Z=X•Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X'</th>
<th>Y'</th>
<th>X•Y</th>
<th>X'•Y'</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Z=(X•Y)+(X'•Y')

Two key concepts

◆ Duality (a meta-theorem— a theorem about theorems)
 - All Boolean expressions have logical duals
 - Any theorem that can be proved is also proved for its dual
 - Replace: • with +, + with •, 0 with 1, and 1 with 0
 - Leave the variables unchanged

◆ de Morgan’s Theorem
 - Procedure for complementing Boolean functions
 - Replace: • with +, + with •, 0 with 1, and 1 with 0
 - Replace all variables with their complements
Useful laws and theorems

Identity: \(X + 0 = X \) \hspace{2cm} Dual: \(X \cdot 1 = X \)

Null: \(X + 1 = 1 \) \hspace{2cm} Dual: \(X \cdot 0 = 0 \)

Idempotent: \(X + X = X \) \hspace{2cm} Dual: \(X \cdot X = X \)

Involution: \((X')' = X\)

Complementarity: \(X + X' = 1 \) \hspace{2cm} Dual: \(X \cdot X' = 0 \)

Commutative: \(X + Y = Y + X \) \hspace{2cm} Dual: \(X \cdot Y = Y \cdot X \)

Associative: \((X + Y) + Z = X + (Y + Z) \) \hspace{2cm} Dual: \((X \cdot Y) \cdot Z = X \cdot (Y \cdot Z) \)

Distributive: \(X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z) \) \hspace{2cm} Dual: \(X + (Y \cdot Z) = (X + Y) \cdot (X + Z) \)

Uniting: \(X \cdot Y + X \cdot Y' = X \) \hspace{2cm} Dual: \((X + Y) \cdot (X + Y') = X \)

Useful laws and theorems (con’t)

Absorption: \(X + X \cdot Y = X \) \hspace{2cm} Dual: \(X \cdot (X + Y) = X \)

Absorption (\#2): \((X + Y')' \cdot Y = X \cdot Y \) \hspace{2cm} Dual: \((X \cdot Y') + Y = X + Y \)

de Morgan's: \((X + Y + \ldots)' = X' \cdot Y' \cdot \ldots \) \hspace{2cm} Dual: \((X \cdot Y \cdot \ldots)' = X' + Y' + \ldots \)

Duality: \((X + Y + \ldots)' = X' \cdot Y' \cdot \ldots \) \hspace{2cm} Dual: \((X \cdot Y \cdot \ldots)' = X + Y + \ldots \)

Multiplying & factoring: \((X + Y) \cdot (X' + Z) = X \cdot Z + X' \cdot Y \)
\hspace{2cm} Dual: \(X \cdot Y + X' \cdot Z = (X + Z) \cdot (X' + Y) \)

Consensus: \((X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X \cdot Z \)
\hspace{2cm} Dual: \((X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z) \)
Proving theorems

- Example 1: Prove the uniting theorem-- $X \cdot Y + X \cdot Y' = X$

 Distributive: $X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$
 Complementarity: $= X \cdot (1)$
 Identity: $= X$

- Example 2: Prove the absorption theorem-- $X + X \cdot Y = X$

 Identity: $X + X \cdot Y = (X \cdot 1) + (X \cdot Y)$
 Distributive: $= X \cdot (1 + Y)$
 Null: $= X \cdot (1)$
 Identity: $= X$

Proving theorems

- Example 3: Prove the consensus theorem-- $(XY) + (YZ) + (X'Z) = XY + X'Z$

 Complementarity: $XY + YZ + X'Z = XY + (X + X')YZ + X'Z$
 Distributive: $= XYZ + XY + X'YZ + X'Z$

 - Use absorption $\{AB + A = A\}$ with $A = XY$ and $B = Z$

 $= XY + X'YZ + X'Z$

 - Rearrange terms

 $= XY + X'YZ + X'Z$

 - Use absorption $\{AB + A = A\}$ with $A = X'Z$ and $B = Y$

 $XY + YZ + X'Z = XY + X'Z$
de Morgan’s Theorem

- Use de Morgan’s Theorem to find complements
- Example: $F = (A+B)(A'+C)$, so $F' = (A'B') + (A'C')$

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Logic simplification

- Use the axioms to simplify logical expressions
 - Why? To use less hardware

- Example: A two-level logic expression

 $Z = A'B'C + AB'C' + AB'C + ABC + ABC'$
 $= AB'C + AB'C' + A'B'C + ABC' + ABC$ rearrange
 $= AB'(C + C') + A'B'C + AB(C' + C)$ distributive
 $= AB' + A'B'C + AB$ comp.
 $= AB' + AB + A'BC$ rearrange
 $= A(B' + B) + A'BC$ distributive
 $= A + A'BC$ comp.

 Use absorption #2D \(((X \cdot Y') + Y = X + Y)\) with $X=BC$ and $Y=A$

 $Z = A + BC$
Example: A full adder

- 1-bit binary adder
 - Inputs: A, B, Carry-in
 - Outputs: Sum, Carry-out

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>S</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[S = A'B'Cin + A'B'Cin' + AB'Cin + ABCin \]

\[Cout = A'B'Cin + AB'Cin + ABCin' + ABCin \]

Simplifying the carry-out function

\[Cout = A'B'Cin + AB'Cin + ABCin' + ABCin \]
\[= A'B'Cin + AB'Cin + ABCin' + ABCin + ABCin \]
\[= A'B'Cin + ABCin + ABCin + ABCin + ABCin \]
\[= (A' + A)BCin + AB'Cin + ABCin' + ABCin \]
\[= (1)BCin + AB'Cin + ABCin' + ABCin \]
\[= BCin + AB'Cin + ABCin' + ABCin + ABCin \]
\[= BCin + AB'Cin + ABCin + ABCin + ABCin' + ABCin \]
\[= BCin + A(B' + B)Cin + ABCin' + ABCin \]
\[= BCin + A(1)Cin + ABCin' + ABCin \]
\[= BCin + ACin + AB(Cin' + Cin) \]
\[= BCin + ACin + AB(1) \]
\[= BCin + ACin + AB \]
Some notation

- Priorities: $\overline{A} \cdot B + C = ((\overline{A}) \cdot B) + C$
- Variables are sometimes called literals