Overview

- Last lecture
- "Switching-network" logic blocks \Rightarrow Multiplexers/selectors \rightarrow Demultiplexers/decoders
- Programmable logic devices (PLDs) \Rightarrow Regular structures for 2 -level logic
- Today
- PLDs
\rightarrow PLA
ROMs
- Tristates

Design examples

CSE370, Lecture 11

Programmable logic (PLAs \& PALs)

- Concept: Large array of uncommitted AND/OR gates - Actually NAND/NOR gates
- You program the array by making or breaking connections \diamond Programmable block for sum-of-products logic

CSE370, Lecture 1

Short-hand notation

- Draw multiple wires as a single wire or bus
\times signifies a connection

CSE370, Lecture 11

PLA example

$\mathrm{F} 1=\mathrm{ABC}$
F2 $=A+B+C$
F3 $=A^{\prime} B^{\prime} C$
F4 $=\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}$
$\mathrm{F} 5=\mathrm{A}$ xor B xor C
F6 $=A$ xnor $B \times n o r ~ C$

ABC|F1 F2 F3F4 F5 F6 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 00 $\begin{array}{lllllllll}0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1\end{array}$ $\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 1 \\ 1\end{array}$

1	1	1	1	0	0	1	1

CSE370, Lecture 11
Think of as a memory-address decoder

PLAs versus PALs

- We've been looking at PLAs
- Fully programmable AND / OR arrays $>$ Can share AND terms
- Programmable array logic (PAL)
- Programmable AND array
- OR array is prewired
\Rightarrow No sharing ANDs
\Rightarrow Cheaper and faster than PLAs

CSE370, Lecture 11
6

Example (con't): Wire a PLA

Minimized functions:
$W=A+B C+B D$
$X=B C^{\prime}$
$Y=B+C$
$Z=A^{\prime} B^{\prime} C^{\prime} D+B C D$
$+A D^{\prime}+B^{\prime} C D^{\prime}$

CSE370, Lecture 11
8

Example: Wire a PAL
Minimized functions:
$W=A+B C+B D$
$X=B C^{\prime}$
$Y=B+C$
$Z=A^{\prime} B^{\prime} C^{\prime} D+B C D$
$+A D^{\prime}+B^{\prime} C D^{\prime}$

What do we do with the unused AND gates?

Compare implementations

- PLA:
- No shared logic terms in this example
- 10 decoded functions (10 AND gates)
- PAL:
- Z requires 4 product terms
$\Rightarrow 16$ decoded functions (16 AND gates) $\Rightarrow 6$ unused AND gates
- This decoder is a poor candidate for PLAs/PALs
- 10 of 16 possible inputs are decoded
- No sharing among AND terms
- Better option?
- Yes - a ROM

CSE370, Lecture 11
10

ROM details

- Similar to a PLA but with a fully decoded AND array
- Completely flexible OR array (unlike a PAL)
- Extremely dense: One transistor per stored bit

CSE370, Lecture 11

Two-level combinational logic using a ROM

- Use a ROM to directly store a truth table - No need to minimize logic
- Example:
$F 0=A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C$
$F 1=A^{\prime} B^{\prime} C+A^{\prime} B C^{\prime}+A B C$ $F 2=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}$
$F 3=A^{\prime} B C+A B^{\prime} C^{\prime}+A B C^{\prime}$

You specify whether to store 1 or 0 in each location in the ROM

Loose end: Tristates

- Tristate buffers have a control input
- Enabled: Buffer works normally
- Disabled: Buffer output is disconnected

module muxtri (In1,In2,Sel,OUT); input In1,In2,Sel;

CSE370, Lecture 11

ROMs versus PLAs/PALs

- ROMs
- Benefits
\Rightarrow Quick to design, simple, dense
- Limitations
\Rightarrow Size doubles for each additional input
\Leftrightarrow Can't exploit don't cares
- PLAs/PALs
- Benefits
\Rightarrow Logic minimization reduces size
- Limitations
\Leftrightarrow PAL OR-plane has hard-wired fan-in
- Another answer: Field programmable gate arrays - Learn about in 467

CSE370, Lecture 11

Example: BCD to 7-segment display controller

- The problem
- Input is a 4-bit BCD digit (A, B, C, D)
- Need signals to drive a display (7 outputs C0 - C6)

时 89
56888

Formalize the problem

- Truth table
- Many don't cares
- Choose implementation target
- If ROM, we are done
- Don't cares imply PAL/PLA may be good choice

Implement design

- Minimize the logic
- Map into PAL/PLA

A B C D C0 C1 C2 C3 C4 C5 C6

 $\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0\end{array}$ \begin{tabular}{llll|lllllll}
0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1

 $\begin{array}{lllllllllll}0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}$

0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 1

0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1

0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1

0 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1

0 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1 \& 0 \& 1 \& 1

0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1

0 \& 1 \& 1 \& 0 \& 1 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1

0 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0

0 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0

1 \& 0 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1

1 \& 0 \& 0 \& 1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 1 \& 1

1 \& 0 \& 1 \& - \& - \& - \& - \& - \& - \& - \& -
\end{tabular}

1 1--

Better SOP implementation

- Can do better than 15 product terms
- Share terms among outputs \Rightarrow only 9 unique product terms \Rightarrow Each term not necessarily minimized

$C 0=A+B D+C+B^{\prime} D$ $C 1=C^{\prime} D^{\prime}+C D+B$ $\mathrm{C} 2=\mathrm{B}+\mathrm{C}^{\prime}+\mathrm{D}$
$C 3=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C$
$\mathrm{C4}=\mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{CD}$
$C 5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C^{\prime}$
$\mathrm{C} 6=\mathrm{A}+\mathrm{CD}+\mathrm{BC}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}$
CSE370, Lecture 11
$0=B C^{\prime} D+C D+B^{\prime} D^{\prime}+B C D^{\prime}+A$ $C 1=B^{\prime} D+C^{\prime} D^{\prime}+C D+B^{\prime} D$
$C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D$
$C 3=B C^{\prime} D+B^{\prime} D+B^{\prime} D^{\prime}+B C D$
$C 4=B^{\prime} D^{\prime}+B C D^{\prime}$
$C 5=B C^{\prime} D+C^{\prime} D^{\prime}+A+B C D^{\prime}$ $C 6=B^{\prime} C+B C^{\prime}+B C D^{\prime}+A$

Sum-of-products implementation

- 15 unique product terms if we minimize individually

$\mathrm{C} 0=\mathrm{A}+\mathrm{BD}+\mathrm{C}+\mathrm{B}^{\prime} \mathrm{D}^{\prime}$
$C 1=C^{\prime} D^{\prime}+C D+B^{\prime}$
$C 2=B+C^{\prime}+D$
$C 3=B^{\prime} D^{\prime}+C D^{\prime}+B C^{\prime} D+B^{\prime} C$
$C 4=B^{\prime} D^{\prime}+C D^{\prime}$
$5=A+C^{\prime} D^{\prime}+B D^{\prime}+B C$
$C 6=A+C D^{\prime}+B C^{\prime}+B^{\prime} C$
CSE370, Lecture 1

PLA implementation

$C 0=B C^{\prime} D+C D+B^{\prime} D^{\prime}+B C D^{\prime}+A$
$C 1=B^{\prime} D+C^{\prime} D^{\prime}+C D+B^{\prime} D^{\prime}$ $C 2=B^{\prime} D+B C^{\prime} D+C^{\prime} D^{\prime}+C D+B C D$ $C 3=B C^{\prime} D+B^{\prime} D+B^{\prime} D^{\prime}+B C D^{\prime}$ $\mathrm{C} 4=\mathrm{B}^{\prime} \mathrm{D}^{\prime}+\mathrm{BCD}^{\prime}$
$C 5=B C^{\prime} D+C^{\prime} D^{\prime}+A+B C D^{\prime}$
$\mathrm{C} 6=\mathrm{B}^{\prime} \mathrm{C}+\mathrm{BC} \mathrm{C}^{\prime}+\mathrm{BCD}+\mathrm{A}$

CSE370, Lecture 11
20

Example: Logical function unit

- Multipurpose functional block
- 3 control inputs (C) specify function
- 2 data inputs (operands) A and \mathbf{B}
- 1 output (same bit-width as input operands)

C 0	C 1	C 2	Function	Comments	
0	0	0	1	always 1	
0	0	1	A + B	logical OR	3 control inputs: C0, C1, C2
0	1	0	(A $\operatorname{B})^{\prime}$	logical NAND	2 data inputs: A, B
0	1	1	A xor B	logical xor	1 output: F
1	0	0	A xnor B	logical xnor	
1	0	1	A • B	logical AND	
1	1	0	(A + B)'	logical NOR	
1	1	1	0	always 0	

CSE370, Lecture 11

Formalize the problem and solve

CSE370, Lecture 11

Implementation choice: multiplexer with discrete gates

Pal Feature: Individually Tri-stated outputs

CSE370, Lecture 11

Pal Feature: Feedback terms

CSE370, Lecture 11

Pal Feature: Registered outputs

CSE370, Lecture 11

Pal Feature: Registers with bypass multiplexers

