Overview

¢ Last lecture
m Incompletely specified functions

¢ Today (guest lecture by Benjamin Ylvisaker)

m Verilog
< Structural constructs
< Describing combinational circuits

CSE370, Lecture 8

Ways of specifying circuits

¢ Schematics
m Structural description

m Describe circuit as interconnected elements
< Build complex circuits using hierarchy
< Large circuits are unreadable

¢ HDLs

m Hardware description languages

<~ Not programming languages

< Parallel languages tailored to digital design
m Synthesize code to produce a circuit

CSE370, Lecture 8

Hardware description languages (HDLSs)

¢ Abel (~1983)
m Developed by Data-1/O
m Targeted to PLDs
m Limited capabilities (can do state machines)

¢ Verilog (~1985)

m Developed by Gateway (now part of Cadence)
m Syntax similar to C
m Moved to public domain in 1990

¢ VHDL (~1987)

m DoD sponsored
m Syntax similar to Ada

CSE370, Lecture 8 3

Verilog versus VHDL

¢ Both “IEEE standard” languages
¢ Most tools support both

¢ Verilog is “simpler”
m Less syntax, fewer constructs

¢ VHDL is more structured
m Can be better for large, complex systems
m Better modularization

CSE370, Lecture 8

Simulation and synthesis

¢ Simulation
m “Execute” a design to verify correctness
¢ Synthesis
m Generate a physical implementation from HDL code
Gate or
Deslzr[i) Ltion Transistor
P Description
v T !
4 N\ e N
Simulation Simulation Physical
Implementation
_ y, \)

Functional Fu.:.]icr;c]'% ngal/ Real
AN |
Validation Validation Chip!

CSE370, Lecture 8 5

Simulation and synthesis (con't)

¢ Simulation
m Models what a circuit does
< Multiply is “*”, ignoring implementation options
m Can include static timing
m Allows you to test design options

¢ Synthesis

m Converts your code to a netlist
< Can simulate synthesized design
m Tools map your netlist to hardware

¢ Simulation and synthesis in the CSE curriculum
m CSE370: Learn simulation
m CSE467: Learn synthesis

CSE370, Lecture 8 6

Simulation

¢ You provide an environment

m Using non-circuit constructs

< Active-HDL waveforms, Read files, print

m Using Verilog simulation code
< A “test fixture”

Note: We will ignore
timing and test benches
until next Verilog lecture

Simulation

Test Fixture
(Specification)

>

—

Circuit Description
(Synthesizeable)

CSE370, Lecture 8

Specifying circuits in Verilog

¢ There are three major styles a SN
m Instances ‘n wires 91

m Continuous assignments

2..g2
“Structural” “Behavioral”
wire E; wire E; reg E, X, Y;
and gl (E,A,B); assign E = A & B; always @ (A or B or C)
not g2(Y,C); assign Y = ~C; begin
or g3(X,E,Y); assign X = E | Y, E =A & B;
X =E | Y;
end

CSE370, Lecture 8 8

Data types

¢ Values on a wire
m 0, 1, x (unknown or conflict), z (tristate or unconnected)

¢ Vectors
m A[3:0] vector of 4 bits: A[3], A[2], A[1], A[O]
< Unsigned integer value
< Indices must be constants

m Concatenating bits/vectors
< e.g. sign extend
» B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
» B[7:0] = {4{A[3]}, A[3:0]};
m Style: Use a[7:0] =b[7:0] + c;
Not a=b+c

m Legal syntax: C = &A[6:7]; // logical and of bits 6 and 7 of A
CSE370, Lecture 8 9

Data types that do not exist

& Structures

¢ Pointers

¢ Objects

¢ Recursive types

¢ (Remember, Verilog is not C or Java or Lisp or ...!)

CSE370, Lecture 8

10

Numbers

¢ Format: <sign><size><base format><number>

¢ 14
m Decimal number
¢ 4bl1l

m 4-bit 2's complement binary of 0011 (is 1101)

¢ 12'b0000_0100_0110
m 12 bit binary number (_ is ignored)

¢ 3'h046
m 3-digit (12-bit) hexadecimal number

¢ \Verilog values are unsigned
m C[4:0] = A[3:0] + B[3:0];
< if A= 0110 (6) and B = 1010(-6), then C = 10000 (not 00000)
< B is zero-padded, not sign-extended

CSE370, Lecture 8

11

Operators

> greater than Relational
>= greater than or equal to Relational
0 bit-select or part-select < less than Relational
<= less than or equal to Relational
thesi
O parenfhens == logical equality Equality
! logical negation Logical = logical inequality Equality
~ negation Bit-wise . .
& reduction AND Reduction o case gquollt}l_ Equo:!ty
| reduction OR Reduction == case inequality Equality
~& reduction NAND Reduction o N
~| reduction NOR Reduction & bit-wise AND Bit-wise
A reduction XOR Reduction N _—
~Nor A reduction XNOR Reduction : or A E!:-w!:: ;S(R)R g!’;-w!:e
~ -~ 1Im-wi Inm-wise
+ unary (sign) plus Arithmetic . N
- unary (sign) minus Arithmetic I bit-wise OR Bit-wise
{} concatenation Concatenaotion && logical AND Logical
{n replication Replication I logical OR Logical
. multiply Arithmetic 7 conditional Conditional
/ divide Arithmetic
% modulus Arithmetic
+ binary plus Arithmetic))
: binary minus Arithmeic Similar to C operators
<< shift left Shift
>> shift right Shift

CSE370, Lecture 8

Two abstraction mechanisms

¢ Modules
m More structural
m Heavily used in 370 and “real” Verilog code

¢ Functions
m More behavioral
m Used to some extent in “real” Verilog, but not much in 370

CSE370, Lecture 8

13

Basic building blocks: Modules

m Instanced into a design A AND2
> Never called gt
B 1 o ‘
= Illegal to nest module defs. e
m Modules execute in parallel NOL__ ‘
= Names are case sensitive C.g
m // for comments
= Name can't begin with a number ,, ¢; 5t simple example
m Use wires for connections module smpl (X,Y,A,B,C);
m and, or, not are keywords input A,B,C;
X, Y,
m All keywords are lower case output X,
] wire E
m Gate declarations (and, or, etc) and gl (E,A,B);
< List outputs first not g2(Y,C);
< Inputs second or g3(X,E,Y);
endmodule

CSE370, Lecture 8 14

Modules are circuit components

= Module has ports A AND2
< External connections T\
< A,B,C,X,Y in example B Tg—j ,,,,, 3
= Port types wor |
< input c :
< output 292

< inout (tristate)
m Use assign statements for

Boolean expressions // previous example as a

// Boolean expression

v and < &
> or < | moéule smpl2 (X,Y,A,B,C);
S NOt < ~ input A,B,C;

output X,Y;

assign X = (A&B) |~C;
assign Y = ~C;
endmodule

CSE370, Lecture 8 15

Structural Verilog

module xor gate (out,a,b);

input a,b;
output out; 8 basic gates (keywords):
zcl,ie iﬁiﬁ (:izi,a;:%, t2; and, or, nand, nor
e invb (bbaz b) : buf, not, xor, xnor
and andl (tl,abar,b);
and and2 (t2,bbar,a);
or orl (out,tl,t2);

endmodule

CSE370, Lecture 8 16

Behavioral Verilog

¢ Describe circuit behavior A—> Surm
m Not implementation B—»| Adder > U
Cin— » Cout

module full addr (Sum,Cout,A,B,Cin);
input A, B, Cin;
output Sum, Cout;
assign {Cout, Sum} = A + B + Cin;
endmodule

{Cout, Sum} is a concatenation

CSE370, Lecture 8 17

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B);

input [3:0] A;

input [3:0] B;

output [3:0] SUM;

output OVER;

assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];
endmodule

“[3:0] A” is a 4-wire bus labeled “A”
Bit 3 is the MSB
Bit 0 is the LSB

Can also write “[0:3] A" Buses are implicitly connected
Bit 0 is the MSB If you write BUS[3:2], BUS[1:0]
Bit 3 is the LSB They become part of BUS[3:0]

CSE370, Lecture 8 18

Continuous assignment

¢ Assignment is continuously evaluated
m Corresponds to a logic gate

m Assignments execute in parallel
Boolean operators

/ (~ for bit-wise negation)
assign A =X | (Y & ~2Z2);

bits can assume four values
assign B[3:0] = 4'b01XX; «— (0,1,%X2)

variables can be n-bits wide
(MSB:LSB)

assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

assign C[15:0] = 4'hO00ff; <«

T arithmetic operator
Gate delay (used by simulator) multiple assignment (concatenation)

CSE370, Lecture 8 19

Example: A comparator

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;
assign Equal = (A & B) | (~A & ~B);
assign Alarger = (A & ~B);
assign Blarger = (~A & B);
endmodule

Top-down design and bottom-up design are both okay
=> module ordering doesn’t matter
= because modules execute in parallel

CSE370, Lecture 8

20

Comparator example (con't)

// Make a 4-bit comparator from 4 1l-bit comparators

module Compare4 (Equal, Alarger, Blarger, A4, B4);
input [3:0] A4, B4;
output Equal, Alarger, Blarger;
wire e0, el, e2, e3, Al0, All, Al2, Al3, B10, Bll, Bl2, B1l3;

Comparel cpO(e0, A10, B10, A4[0], B4[0]);
Comparel cpl(el, All, Bl1l1l, A4[1l], B4[1l]);
Comparel cp2(e2, Al2, B12, A4[2], B4[2]);
Comparel cp3(e3, Al3, B13, A4[3], B4[3],)

assign Equal = (e0 & el & e2 & e3);
assign Alarger = (Al3 | (Al2 & e3) |
(All & e3 & e2) |
(A1l0 & e3 & e2 & el));
assign Blarger = (~Alarger & ~Equal);
endmodule

CSE370, Lecture 8 21

Sequential assigns dont make any sense

assign A = X | (Y & ~2);

“Reusing” a variable in

assign B = W | A; several assign statements
is not allowed
assign A =Y & Z;

CSE370, Lecture 8 22

Always Blocks

Variables that appear
on the left hand side in

an always block must
/ be declared as “reg”s
reg A, B, C;

Sensitivity list
always @ (W or X or Y or Z)/

begin
A=X| (Y & ~2);
B=WIA&; Statements in an always
A=Y & Z; block are executed in
if (A & B) begin sequence
B = 2;
C=W| Y;
d

en All variables must be assigned on
end every control path!!!

otherwise you get the dreaded
“inferred latch”)

CSE370, Lecture 8 23

Functions

¢ Use functions for complex combinational logic

module and gate (out, inl, in2);
input inl, in2;
output out;

assign out = myfunction(inl, in2);

function myfunction;
input inl, in2;

begin
myfunction = inl & in2;
end Benefit:
endfunction }
Functions force a result
endmodule => Compiler will fail if function

does not generate a result

CSE370, Lecture 8 24

Sequential Verilog-- Blocking and non-blocking
assignments

¢ Blocking assignments (Q = A)

m Variable is assigned immediately
= New value is used by subsequent statements

¢ Non-blocking assignments (Q <= A)
m Variable is assigned after all scheduled statements are executed
= Value to be assigned is computed but saved for later
m Usual use: Register assignment
= Registers simultaneously take new values after the clock edge

¢ Example: Swap

always Q@ (posedge CLK) always Q@ (posedge CLK)
begin begin
temp = B; A <= B;
B =A4A; B <= A;
A = temp; end
end

CSE370, Lecture 8 25

Sequential Verilog-- Assignments- watch out!

¢ Blocking Versus

reg B, C, D;

always (@ (posedge clk)

begin
B = A;
C = B;
D =2¢C;
end

—>
>
>

CSE370, Lecture 8

Non-blocking

reg B, C, D;

always (@ (posedge clk)
begin
B <=A;
C <= B;
D <= C;
end

26

Verilog tips

¢ Do not write C-code

m Think hardware, not algorithms
< Verilog is inherently parallel
<~ Compilers don’t map algorithms to circuits well

¢ Do describe hardware circuits
m First draw a dataflow diagram
m Then start coding

¢ References

m Tutorial and reference manual are found in ActiveHDL help
m And in today’s reading assignment
m “Starter’s Guide to Verilog 2001” by Michael Ciletti

copies for borrowing in hardware lab

CSE370, Lecture 8 27

