
1CSE370, Lecture 8

Overview

 Last lecture
 Incompletely specified functions

 Today (guest lecture by Benjamin Ylvisaker)
 Verilog

 Structural constructs
 Describing combinational circuits

2CSE370, Lecture 8

Ways of specifying circuits

 Schematics
 Structural description
 Describe circuit as interconnected elements

 Build complex circuits using hierarchy
 Large circuits are unreadable

 HDLs
 Hardware description languages

 Not programming languages
 Parallel languages tailored to digital design

 Synthesize code to produce a circuit

3CSE370, Lecture 8

Hardware description languages (HDLs)

 Abel (~1983)
 Developed by Data-I/O
 Targeted to PLDs
 Limited capabilities (can do state machines)

 Verilog (~1985)
 Developed by Gateway (now part of Cadence)
 Syntax similar to C
 Moved to public domain in 1990

 VHDL (~1987)
 DoD sponsored
 Syntax similar to Ada

4CSE370, Lecture 8

Verilog versus VHDL

 Both “IEEE standard” languages

 Most tools support both

 Verilog is “simpler”
 Less syntax, fewer constructs

 VHDL is more structured
 Can be better for large, complex systems
 Better modularization

5CSE370, Lecture 8

Simulation and synthesis

 Simulation
 “Execute” a design to verify correctness

 Synthesis
 Generate a physical implementation from HDL code

SynthesisHDL
Description

Gate or
Transistor
Description

Simulation Simulation Physical
Implementation

Functional
Validation

Functional/
Timing

Validation

Real
Chip!

6CSE370, Lecture 8

Simulation and synthesis (con’t)

 Simulation
 Models what a circuit does

 Multiply is “*”, ignoring implementation options
 Can include static timing
 Allows you to test design options

 Synthesis
 Converts your code to a netlist

 Can simulate synthesized design
 Tools map your netlist to hardware

 Simulation and synthesis in the CSE curriculum
 CSE370: Learn simulation
 CSE467: Learn synthesis

7CSE370, Lecture 8

Simulation

 You provide an environment
 Using non-circuit constructs

 Active-HDL waveforms, Read files, print
 Using Verilog simulation code

 A “test fixture”

Simulation

Test Fixture
(Specification)

Circuit Description
(Synthesizeable)

Note: We will ignore
timing and test benches
until next Verilog lecture

8CSE370, Lecture 8

Specifying circuits in Verilog

 There are three major styles
 Instances ‘n wires
 Continuous assignments
 “always” blocks

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

wire E;
and g1(E,A,B);
not g2(Y,C);
or g3(X,E,Y);

wire E;
assign E = A & B;
assign Y = ~C;
assign X = E | Y;

reg E, X, Y;
always @ (A or B or C)
begin
 E = A & B;
 Y = ~C;
 X = E | Y;
end

“Structural” “Behavioral”

9CSE370, Lecture 8

Data types

 Values on a wire
 0, 1, x (unknown or conflict), z (tristate or unconnected)

 Vectors
 A[3:0] vector of 4 bits: A[3], A[2], A[1], A[0]

 Unsigned integer value
 Indices must be constants

 Concatenating bits/vectors
 e.g. sign extend

 B[7:0] = {A[3], A[3], A[3], A[3], A[3:0]};
 B[7:0] = {4{A[3]}, A[3:0]};

 Style: Use a[7:0] = b[7:0] + c;
 Not a = b + c;

 Legal syntax: C = &A[6:7]; // logical and of bits 6 and 7 of A

10CSE370, Lecture 8

Data types that do not exist

 Structures

 Pointers

 Objects

 Recursive types

 (Remember, Verilog is not C or Java or Lisp or …!)

11CSE370, Lecture 8

Numbers

 Format: <sign><size><base format><number>

 14
 Decimal number

 –4’b11
 4-bit 2’s complement binary of 0011 (is 1101)

 12’b0000_0100_0110
 12 bit binary number (_ is ignored)

 3’h046
 3-digit (12-bit) hexadecimal number

 Verilog values are unsigned
 C[4:0] = A[3:0] + B[3:0];

 if A = 0110 (6) and B = 1010(–6), then C = 10000 (not 00000)
 B is zero-padded, not sign-extended

12CSE370, Lecture 8

Operators

Similar to C operators

13CSE370, Lecture 8

Two abstraction mechanisms

 Modules
 More structural
 Heavily used in 370 and “real” Verilog code

 Functions
 More behavioral
 Used to some extent in “real” Verilog, but not much in 370

14CSE370, Lecture 8

// first simple example
module smpl (X,Y,A,B,C);
 input A,B,C;
 output X,Y;
 wire E
 and g1(E,A,B);
 not g2(Y,C);
 or g3(X,E,Y);
endmodule

Basic building blocks: Modules

 Instanced into a design
 Never called

 Illegal to nest module defs.
 Modules execute in parallel
 Names are case sensitive
 // for comments
 Name can’t begin with a number
 Use wires for connections
 and, or, not are keywords
 All keywords are lower case
 Gate declarations (and, or, etc)

 List outputs first
 Inputs second

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

15CSE370, Lecture 8

Modules are circuit components

 Module has ports
 External connections
 A,B,C,X,Y in example

 Port types
 input
 output
 inout (tristate)

 Use assign statements for
Boolean expressions
 and ⇔ &
 or ⇔ |
 not ⇔ ~

// previous example as a
// Boolean expression
module smpl2 (X,Y,A,B,C);
 input A,B,C;
 output X,Y;
 assign X = (A&B)|~C;
 assign Y = ~C;
endmodule

E

C
g2

Y

A

B
g1

g3 X

2

NOT

1

AND2

3

OR2

16CSE370, Lecture 8

module xor_gate (out,a,b);
 input a,b;
 output out;
 wire abar, bbar, t1, t2;
 not inva (abar,a);
 not invb (bbar,b);
 and and1 (t1,abar,b);
 and and2 (t2,bbar,a);
 or or1 (out,t1,t2);
endmodule

Structural Verilog

8 basic gates (keywords):
 and, or, nand, nor
 buf, not, xor, xnor

bbar

t2

t1
abar

b

invb a
and2

a

inva b
and1

or1 out

5

NOT

7

AND2

4

NOT

6

AND2

8

OR2

17CSE370, Lecture 8

module full_addr (Sum,Cout,A,B,Cin);
 input A, B, Cin;
 output Sum, Cout;
 assign {Cout, Sum} = A + B + Cin;
endmodule

A
B

Cin Cout
SumAdder

Behavioral Verilog

 Describe circuit behavior
 Not implementation

{Cout, Sum} is a concatenation

18CSE370, Lecture 8

Behavioral 4-bit adder

module add4 (SUM, OVER, A, B);
 input [3:0] A;
 input [3:0] B;
 output [3:0] SUM;
 output OVER;
 assign {OVER, SUM[3:0]} = A[3:0] + B[3:0];
endmodule

“[3:0] A” is a 4-wire bus labeled “A”
 Bit 3 is the MSB
 Bit 0 is the LSB

Can also write “[0:3] A”
 Bit 0 is the MSB
 Bit 3 is the LSB

Buses are implicitly connected
If you write BUS[3:2], BUS[1:0]
They become part of BUS[3:0]

19CSE370, Lecture 8

assign A = X | (Y & ~Z);

assign B[3:0] = 4'b01XX;

assign C[15:0] = 4'h00ff;

assign #3 {Cout, Sum[3:0]} = A[3:0] + B[3:0] + Cin;

arithmetic operator

multiple assignment (concatenation)Gate delay (used by simulator)

Boolean operators
(~ for bit-wise negation)

bits can assume four values
(0, 1, X, Z)

variables can be n-bits wide
(MSB:LSB)

Continuous assignment

 Assignment is continuously evaluated
 Corresponds to a logic gate
 Assignments execute in parallel

20CSE370, Lecture 8

module Compare1 (Equal, Alarger, Blarger, A, B);
 input A, B;
 output Equal, Alarger, Blarger;
 assign Equal = (A & B) | (~A & ~B);
 assign Alarger = (A & ~B);
 assign Blarger = (~A & B);
endmodule

Example: A comparator

Top-down design and bottom-up design are both okay
 ⇒ module ordering doesn’t matter
 ⇒ because modules execute in parallel

21CSE370, Lecture 8

// Make a 4-bit comparator from 4 1-bit comparators

module Compare4(Equal, Alarger, Blarger, A4, B4);
 input [3:0] A4, B4;
 output Equal, Alarger, Blarger;
 wire e0, e1, e2, e3, Al0, Al1, Al2, Al3, B10, Bl1, Bl2, Bl3;

 Compare1 cp0(e0, Al0, Bl0, A4[0], B4[0]);
 Compare1 cp1(e1, Al1, Bl1, A4[1], B4[1]);
 Compare1 cp2(e2, Al2, Bl2, A4[2], B4[2]);
 Compare1 cp3(e3, Al3, Bl3, A4[3], B4[3],);

 assign Equal = (e0 & e1 & e2 & e3);
 assign Alarger = (Al3 | (Al2 & e3) |
 (Al1 & e3 & e2) |
 (Al0 & e3 & e2 & e1));
 assign Blarger = (~Alarger & ~Equal);
endmodule

Comparator example (con’t)

22CSE370, Lecture 8

Sequential assigns don’t make any sense

assign A = X | (Y & ~Z);

assign B = W | A;

assign A = Y & Z;

“Reusing” a variable in
several assign statements
is not allowed

23CSE370, Lecture 8

Always Blocks

reg A, B, C;

always @ (W or X or Y or Z)
begin
 A = X | (Y & ~Z);
 B = W | A;
 A = Y & Z;
 if (A & B) begin
 B = Z;
 C = W | Y;
 end
end

Sensitivity list

Variables that appear
on the left hand side in
an always block must
be declared as “reg”s

Statements in an always
block are executed in
sequence

All variables must be assigned on
every control path!!!
(otherwise you get the dreaded
“inferred latch”)

24CSE370, Lecture 8

module and_gate (out, in1, in2);
 input in1, in2;
 output out;

 assign out = myfunction(in1, in2);

 function myfunction;
input in1, in2;
begin
 myfunction = in1 & in2;
end

 endfunction

endmodule

Benefit:
 Functions force a result
 ⇒ Compiler will fail if function
 does not generate a result

Functions

 Use functions for complex combinational logic

25CSE370, Lecture 8

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Sequential Verilog-- Blocking and non-blocking
assignments
 Blocking assignments (Q = A)

 Variable is assigned immediately
 New value is used by subsequent statements

 Non-blocking assignments (Q <= A)
 Variable is assigned after all scheduled statements are executed

 Value to be assigned is computed but saved for later
 Usual use: Register assignment

 Registers simultaneously take new values after the clock edge

 Example: Swap

26CSE370, Lecture 8

reg B, C, D;

always @(posedge clk)
 begin
 B <= A;
 C <= B;
 D <= C;
 end

reg B, C, D;

always @(posedge clk)
 begin
 B = A;
 C = B;
 D = C;
 end

Sequential Verilog-- Assignments- watch out!

 Blocking versus Non-blocking

27CSE370, Lecture 8

Verilog tips

 Do not write C-code
 Think hardware, not algorithms

 Verilog is inherently parallel
 Compilers don’t map algorithms to circuits well

 Do describe hardware circuits
 First draw a dataflow diagram
 Then start coding

 References
 Tutorial and reference manual are found in ActiveHDL help
 And in today’s reading assignment
 “Starter’s Guide to Verilog 2001” by Michael Ciletti
 copies for borrowing in hardware lab

