Overview

- Last lecture
 - deMorgan's theorem
 - NAND and NOR
 - Canonical forms

 - ✔ Product-of-sums (maxterms)
- ◆ Today's lecture
 - Logic simplification
 - **∠** Boolean cubes
 - ★ Karnaugh maps

CSE370, Lecture 6

Logic-function simplification

- Key tool: The uniting theorem $\rightarrow A(B'+B) = A$
- The approach:
 - Find subsets of the ON-set where some variables don't change (the A's above) and others do (the B's above)
 - Eliminate the changing variables (the B's)

CSE370, Lecture 6

Boolean cubes

- ◆ *Visualize* when we can apply the uniting theorem
 - n input variables = n-dimensional "cube"

CSE370, Lecture 6

Mapping truth tables onto Boolean cubes

- ◆ ON set = solid nodes
- ◆ OFF set = empty nodes

CSE370, Lecture 6

Logic minimization using Boolean cubes

- Uniting theorem = find reduced-dimensionality subcubes
- ◆ Example: Binary full-adder carry-out logic
 - On-set is covered by the OR of three 2-D subcubes

В	Cin	Cout
0	0	0
0	1	0
1	0	0
1	1	1
0	0	0
0	1	1
1	0	1
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 0 1 1 0 0 0 1 1 1

Cout = BCin+AB+ACin

CSE370, Lecture 6

Karnaugh maps

- ◆ Flat representation of Boolean cubes
 - Easy to use for 2– 4 dimensions
 - Hard for 4 6 dimensions
 - Virtually impossible for 6+ dimensions ✓ Use CAD tools
- Help visualize adjacencies
 - On-set elements that have one variable changing are adjacent
 Unlike a truth-table
 - Visual way to apply the uniting theorem

	Α	В	F
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	0

CSE370, Lecture 6

M-dimensional cubes in n-dimensional space

- ◆ In a 3-cube (three variables):
 - A 0-cube (a single node) yields a term in 3 literals
 - A 1-cube (a line of two nodes) yields a term in 2 literals
 - A 2-cube (a plane of four nodes) yields a term in 1 literal
 - A 3-cube (a cube of eight nodes) yields a constant term "1"

 $F(A,B,C) = \sum m(4,5,6,7)$

On-set forms a square (a 2-D cube)

A is asserted (true) and unchanging B and C vary

This subcube represents the literal A

CSE370, Lecture 6 6

K-map cell numbering

- ◆ Gray-code: Only one bit changes between cells
 - Example: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$
- ◆ Layout for 2 4 dimension K-maps:

CSE370, Lecture 6

8

Adjacencies

- Wrap—around at edges
 - First column to last column
 - Top row to bottom row

AB			Α	
c/	00	01	11	10
0←	000-	→010 2	110 6	100 4
C 1	001	011	111 7	101 5
R				

CSE370, Lecture 6

9

11

K-map minimization (con't)

◆ Obtain the complement by covering 0s with subcubes

$$\begin{matrix} \textbf{AB} & \textbf{OO} & \textbf{OI} & \frac{\textbf{A}}{\textbf{11} \ \textbf{10}} \\ \textbf{O} & 0 & 0 & 0 & 0 \\ \textbf{O} & 0 & 0 & 0 & 0 \\ \textbf{I} & 0 & 0 & 0 & 0 \\ \textbf{I} & 0 & 0 & 0 & 0 \\ \hline \textbf{B} \end{matrix}$$

$$F(A,B,C) = \Sigma m(0,4,5,7)$$

= B'C'+AC

$$F'(A,B,C) = \Sigma m(1,2,3,6)$$

= A'C + BC'

CSE370, Lecture 6

$$F(A,B,C) = ???$$

$$F'(A,B,C) = ???$$

K-map minimization: 2 and 3 variables

K-map minimization: 4 variables

- Minimize $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
 - Find the least number of subcubes, each as large as possible, that cover the ON-set

CSE370, Lecture 6

CSE370, Lecture 6

12

Karnaugh map: 4-variable example (con't)

- Minimize $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
- ◆ Answer: F = C+A'BD+B'D'

13

CSE370, Lecture 6

K-map class examples

 $F(A,B,C,D) = \Sigma m(0,3,7,8,11,15)$

 $F(A,B,C) = \Sigma m(0,3,6,7)$

F(A,B,C) = ??? F'(A,B,C) = ???

CSE370, Lecture 6

14