Lecture 6

◆ Logistics
 ■ HW2 out, due 4/16 Wednesday
 ■ Lab 2 ongoing

◆ Last lecture
 ■ Canonical forms
 ■ NAND and NOR

◆ Today’s lecture
 ■ One more pushing bubble example
 ■ Logic simplification
 ☑ Boolean cubes
 ☑ Karnaugh maps

Example of bubble pushing: NAND/NAND

\[F = A'B'C + A'B'C + AB'C + ABC + A'B + ABC \]

\[F = (A + B + C)(A + B + C)(A' + B + C) \]
Example of bubble pushing: NOR/NOR

\[F = A'B'C + A'BC + AB'C + ABC + A'B + ABC \]

\[F' = (A + B + C)(A + B' + C)(A' + B + C) \]

Goal: Minimize two-level logic expression

- Algebraic simplification
 - not an systematic procedure
 - hard to know when we reached the minimum
- Computer-aided design tools
 - require very long computation times (NP hard)
 - heuristic methods employed – "educated guesses"
- Visualization methods are useful
 - our brain is good at figuring things out over computers
 - many real-world problems are solvable by hand
Key tool: The Uniting Theorem

- The uniting theorem \(A(B' + B) = A \)
- The approach:
 - Find some variables don’t change (the A’s above) and others do (the B’s above)
 - Eliminate the changing variables (the B’s)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- A has the same value in both “on-set” rows \(\Rightarrow \) keep A
- B has a different value in the two rows \(\Rightarrow \) eliminate B

\[F = A'B' + A'B = A'(B+B') = A' \]

Boolean cubes

- Visualization tool for the uniting theorem
- n input variables = n-dimensional “cube”
Mapping truth tables onto Boolean cubes

- **ON set = solid nodes**
- **OFF set = empty nodes**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Look for on-set adjacent to each other

Sub-cube (a line) comprises two nodes

A varies within the sub-cube; B does not

This sub-cube represents B'

Example using Boolean cube

- **Binary full-adder carry-out logic**

 - On-set is covered by the OR of three 2-D subcubes

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[(A'+A)BCin \]

\[A(B+B')Cin \]

\[AB(Cin'+Cin) \]

\[Cout = BCin + AB + ACin \]
M-dimensional cubes in n-dimensional space

- In a 3-cube (three variables):
 - A 0-cube (a single node) yields a term in 3 literals
 - A 1-cube (a line of two nodes) yields a term in 2 literals
 - A 2-cube (a plane of four nodes) yields a term in 1 literal
 - A 3-cube (a cube of eight nodes) yields a constant term "1"

F(A,B,C) = \sum m(4,5,6,7)
On-set forms a square (a 2-D cube)
A is asserted (true) and unchanging
B and C vary
This sub-cube represents the literal A

Karnaugh maps (K-map)

- Flat representation of Boolean cubes
 - Easy to use for 2- 4 dimensions
 - Hard for 4 - 6 dimensions
 - Virtually impossible for 6+ dimensions
 - Use CAD tools
- Help visualize adjacencies
 - On-set elements that have one variable changing are adjacent

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
2, 3, and 4 dimensional K-maps

- Uses Gray code: Only one bit changes between cells
 - Example: 00 → 01 → 11 → 10

Adjacencies

- Wrap-around at edges
 - First column to last column
 - Top row to bottom row
K-map minimization example: 2 variables

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

F = B'

K-map minimization example: 3 variables

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Cout = AB + BCin + ACin
K-map minimization example: minterms

\[F(A, B, C) = \Sigma m(0, 4, 5, 7) = B'C' + AC \]

K-map minimization example: complement

\[F(A, B, C) = \Sigma m(0, 4, 5, 7) = B'C' + AC \]
\[F'(A, B, C) = \Sigma m(1, 2, 3, 6) = A'C + BC' \]
K-map minimization example: 4 variables

- Minimize $F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
 - Find the least number of subcubes, each as large as possible, that cover the ON-set

Answer: $F = C + A'B'D + B'D'$
K-map minimization examples: do it yourself

\[F(A,B,C) = \Sigma m(0,3,6,7) \]
\[F'(A,B,C) = \]

\[F(A,B,C,D) = \Sigma m(0,3,7,8,11,15) \]
\[F'(A,B,C,D) = \]