Lecture 6

- Logistics

- HW2 out, due 4/16 Wednesday
- Lab 2 ongoing
- Last lecture
- Canonical forms
- NAND and NOR
- Today's lecture
- One more pushing bubble example
- Logic simplification

K Boolean cubes
\boldsymbol{K} Karnaugh maps

Example of bubble pushing: NOR/NOR

Goal: Minimize two-level logic expression

- Algebraic simplification
- not an systematic procedure
- hard to know when we reached the minimum
- Computer-aided design tools
- require very long computation times (NP hard)

■ heuristic methods employed - "educated guesses"

- Visualization methods are useful
- our brain is good at figuring things out over computers
- many real-world problems are solvable by hand

Key tool: The Uniting Theorem

- The uniting theorem $\rightarrow A\left(B^{\prime}+B\right)=A$
- The approach:
- Find some variables don't change (the A's above) and others do (the B's above)
- Eliminate the changing variables (the B's)

A B	F	A has the same value in both "on-set" rows \Rightarrow keep A
$0{ }^{0} 0$	1	
$0{ }^{1}$	1	
10	0	B has a different value in the two rows \Rightarrow eliminate B
1	0	
		$F=A^{\prime} B^{\prime}+A^{\prime} B=A^{\prime}\left(B+B^{\prime}\right)=A^{\prime}$

Boolean cubes

- Visualization tool for the uniting theorem
- n input variables $=n$-dimensional "cube"

Mapping truth tables onto Boolean cubes

- ON set = solid nodes
- OFF set = empty nodes

Example using Boolean cube

- Binary full-adder carry-out logic
- On-set is covered by the OR of three 2-D subcubes

A	B	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Cout $=B C i n+A B+A C i n$

M-dimensional cubes in n-dimensional space

- In a 3-cube (three variables):
- A 0 -cube (a single node) yields a term in 3 literals
- A 1-cube (a line of two nodes) yields a term in 2 literals
- A 2-cube (a plane of four nodes) yields a term in 1 literal
- A 3-cube (a cube of eight nodes) yields a constant term "1"

Karnaugh maps (K-map)

- Flat representation of Boolean cubes
- Easy to use for 2- 4 dimensions
- Hard for 4-6 dimensions
- Virtually impossible for 6+ dimensions \boldsymbol{K} Use CAD tools
- Help visualize adjacencies

	A	B	F
0	0	0	1
1	0	1	0
2	1	0	1
3	1	1	0

- On-set elements that have one variable changing are adjacent

	${ }^{\text {A }} 1$	
0	${ }_{0} 1$	2
1	10	${ }_{3} 0$

2, 3, and 4 dimensional K-maps

- Uses Gray code: Only one bit changes between cells
- Example: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$

Adjacencies

- Wrap-around at edges
- First column to last column
- Top row to bottom row

K-map minimization example: 2 variables

	A	B	F	$B^{A} 0 \quad 1$			$F=B^{\prime}$
0	0	0	1				
1	0	1	0	0	1	1	
2	1	0	1	1		2	
3	1	1	0	1	10	30	

K-map minimization example: 3 variables

A	B	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

K-map minimization example: minterms

$$
\begin{aligned}
F(A, B, C) & =\Sigma m(0,4,5,7) \\
& =B^{\prime} C^{\prime}+A C
\end{aligned}
$$

K-map minimization example: complement

$$
\begin{aligned}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) & =\Sigma \mathrm{m}(0,4,5,7) \\
& =\mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{AC} \\
\mathrm{~F}^{\prime}(\mathrm{A}, \mathrm{~B}, \mathrm{C}) & =\Sigma \mathrm{m}(1,2,3,6) \\
& =\mathrm{A}^{\prime} \mathrm{C}+\mathrm{BC}^{\prime}
\end{aligned}
$$

K-map minimization example: 4 variables

- Minimize $F(A, B, C, D)=\Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
- Find the least number of subcubes, each as large as possible, that cover the ON-set

K-map minimization example: 4 variables

- Minimize $F(A, B, C, D)=\Sigma m(0,2,3,5,6,7,8,10,11,14,15)$
- Answer: F = C+A'BD+B'D'

K-map minimization examples: do it yourself

$$
\begin{array}{ll}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,3,6,7) & \mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,3,7,8,11,15) \\
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})= & \mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})= \\
\mathrm{F}^{\prime}(\mathrm{A}, \mathrm{~B}, \mathrm{C})= & \mathrm{F}^{\prime}(\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=
\end{array}
$$

