Lecture 5

- Logistics

- HW1 was due before lecture
- HW2 posted today, due in one week
- Lab2 ongoing
- Question on how to post lab grades/check list
- Final exam scheduled: 6/9/ 8:30am here EEB 105
- Last lecture
- Logic gates and truth tables
- Implementing logic functions
- Today's lecture
- Canonical forms
- NAND and NOR

de Morgan's theorem

- Replace
- • with +, + with •, 0 with 1 , and 1 with 0
- All variables with their complements
- Example 1: $Z=A^{\prime} B^{\prime}+A^{\prime} C^{\prime}$

$$
\begin{aligned}
Z^{\prime} & =\left(A^{\prime} B^{\prime}+A^{\prime} C^{\prime}\right)^{\prime} \\
& =(A+B) \cdot(A+C)
\end{aligned}
$$

- Example 2: $Z=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}$

$$
\begin{aligned}
Z^{\prime} & =\left(A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}\right)^{\prime} \\
& =\left(A+B+C^{\prime}\right) \cdot\left(A+B^{\prime}+C^{\prime}\right) \cdot\left(A^{\prime}+B+C^{\prime}\right) \cdot\left(A^{\prime}+B^{\prime}+C\right)
\end{aligned}
$$

Canonical forms

Canonical forms

- Standard forms for Boolean expressions
- Generally not the simplest forms
\boldsymbol{k} Can be minimized
- Derived from truth table
- Two canonical forms
- Sum-of-products (minterms)
- Product-of-sum (maxterms)

Sum-of-products canonical form (SOP)

- Also called disjunctive normal form (DNF)
- Commonly called a minterm expansion

Minterms

- Variables appears exactly once in each minterm
- In true or inverted form (but not both)

A	B	C	rms
0	0	0	$A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{m} 0$
0	0	1	$A^{\prime} \mathrm{B}^{\prime} \mathrm{C}$ m1
0	1	0	$A^{\prime} \mathrm{BC}^{\prime} \mathrm{m} 2$
0	1	1	A'BC m3
1	0	0	$A B^{\prime} C^{\prime} \mathrm{m} 4$
1	0	1	$A B^{\prime} C$ m5
1	1	0	$A B C^{\prime} \mathrm{m} 6$
1	1	1	ABC m7

F in canonical form:
$F(A, B, C)=\Sigma m(1,3,5,6,7)$

$$
=m 1+m 3+m 5+m 6+m 7
$$

$$
=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C
$$

canonical form \rightarrow minimal form
$F(A, B, C)=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime}$

$$
=\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime}
$$

$=\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime}$
$=A B C^{\prime}+C$
$=A B+C$

Product-of-sums canonical form (POS)

- Also called conjunctive normal form (CNF)
- Commonly called a maxterm expansion

A	B	C	F F^{\prime}	$\begin{array}{cc} 000 & 010 \\ F=(A+B+C) & \left(A+B^{\prime}\right. \end{array}$	$\begin{gathered} 100 \\ \mathbf{C})\left(\mathbf{A}^{\prime}+\mathbf{B}+\mathbf{C}\right) \end{gathered}$
0	0	0	$0-1$		
0	0	1	10		
0	1	0	$0-1$		
0	1	1	10		
1	0	0	$0-1$		
1	0	1	10		
1	1	0	10		
1	1	1	10		

$$
F^{\prime}=\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)
$$

Maxterms

- Variables appears exactly once in each maxterm
- In true or inverted form (but not both)

A	B	C	maxterms	
0	0	0	$A+B+C$	$M 0$
0	0	1	$A+B+C^{\prime}$	$M 1$
0	1	0	$A+B^{\prime}+C$	$M 2$
0	1	1	$A+B^{\prime}+C^{\prime}$	$M 3$
1	0	0	$A^{\prime}+B+C$	$M 4$
1	0	1	$A^{\prime}+B+C^{\prime}$	$M 5$
1	1	0	$A^{\prime}+B^{\prime}+C$	$M 6$
1	1	1	$A^{\prime}+B^{\prime}+C^{\prime}$	$M 7$

short-hand notation

F in canonical form:

$$
\begin{aligned}
F(A, B, C) & =\Pi M(0,2,4) \\
& =M 0 \cdot M 2 \cdot M 4 \\
& =(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
\end{aligned}
$$

canonical form \rightarrow minimal form

$$
F(A, B, C)=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
$$

$$
=(A+B+C)\left(A+B^{\prime}+C\right) \cdot
$$

$$
(A+B+C)\left(A^{\prime}+B+C\right)
$$

$$
=(A+C)(B+C)
$$

Conversion between canonical forms

- Minterm to maxterm
- Use maxterms that aren't in minterm expansion
- $F(A, B, C)=\sum m(1,3,5,6,7)=$ ПМ $(0,2,4)$
- Maxterm to minterm
- Use minterms that aren't in maxterm expansion
- $F(A, B, C)=\Pi M(0,2,4)=\sum m(1,3,5,6,7)$
- Minterm of F to minterm of F^{\prime}
- Use minterms that don't appear
- $F(A, B, C)=\sum m(1,3,5,6,7) \quad F^{\prime}(A, B, C)=\sum m(0,2,4)$
- Maxterm of F to maxterm of F^{\prime}
- Use maxterms that don't appear
- $F(A, B, C)=\Pi M(0,2,4) \quad F^{\prime}(A, B, C)=\prod M(1,3,5,6,7)$

NAND/NOR more common/efficient

- CMOS logic gates are more common and efficient in the inverted forms
- NAND, NOR, NOT
- Even though Canonical forms discussed so far used AND/OR, NAND/NOR preferred for real hardware implementation

X	Y	Z
0	0	1
0	1	1
1	0	1
1	1	0

NAND and NOR (truth table)

$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$
NOR is equivalent to AND with inputs complemented

X	Y	X^{\prime}	Y^{\prime}	$(X+Y)^{\prime} X^{\prime} \cdot Y^{\prime}$	
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

$(X \cdot Y)^{\prime}=X^{\prime}+Y^{\prime}$
NAND is equivalent to OR with inputs complemented

X	Y	X^{\prime}	Y^{\prime}	$(X \cdot Y)^{\prime}$	$X^{\prime}+Y^{\prime}$
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

NAND and NOR (logic gates)

- de Morgan's
- Standard form:
$A^{\prime} B^{\prime}=(A+B)^{\prime}$
$A^{\prime}+B^{\prime}=(A B)^{\prime}$
- Inverted:
$A+B=\left(A^{\prime} B^{\prime}\right)^{\prime}$
$(A B)=\left(A^{\prime}+B^{\prime}\right)^{\prime}$
- AND with complemented inputs \equiv NOR
- OR with complemented inputs \equiv NAND
- OR \equiv NAND with complemented inputs
- $\mathrm{AND} \equiv \mathrm{NOR}$ with complemented inputs

Converting to use NAND/NOR

- Introduce inversions ("bubbles")
- Introduce bubbles in pairs
\boldsymbol{k} Conserve inversions
\boldsymbol{K} Do not alter logic function
- Example
- AND/OR to NAND/NAND

$$
\begin{aligned}
Z & =A B+C D \\
& =\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\right]^{\prime} \\
& =\left[(A B)^{\prime}(C D)^{\prime}\right]^{\prime}
\end{aligned}
$$

Converting to use NAND/NOR (con't)

- Example: AND/OR network to NOR/NOR

$$
\begin{aligned}
Z & =A B+C D \\
& =\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime} \\
& =\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime \prime} \\
& =\left\{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(C^{\prime}+D^{\prime}\right)^{\prime}\right]^{\prime}\right\}^{\prime}
\end{aligned}
$$

conserve
"bubbles"

Converting to use NAND/NOR (con't)

- Example: OR/AND to NAND/NAND

Converting between forms (con't)

- Example: OR/AND to NOR/NOR

