Lecture 4

- Logistics

- Classroom permanently changed to this one, EEB105
- Lab2 is assigned today --- don't fall behind
- HW1 is due on Wednesday in class before lecture
- Last lecture --- Boolean algebra
- Axioms
- Useful laws and theorems
- Simplifying Boolean expressions
- Today's lecture
- One more example of Boolean logic simplification
- Logic gates and truth tables
- Implementing logic functions

One more example of logic simplification

- Example:

$$
Z=A^{\prime} B C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C
$$

Logic gates and truth tables

- AND	$X \cdot Y$	XY		X	Y	Z
				0	0	0
				1	1	1

- OR $\quad X+Y$

X	Y	Z
0	0	0
0	1	1
1	0	1
1	1	1

- NOT \bar{X}
X^{\prime}

X	Y
0	1
1	0

- Buffer X

X	Y
0	
1	

Logic gates and truth tables (con't)

- NOR $\overline{\mathrm{X}+\mathrm{Y}}$
$-\mathrm{XOR} \quad \mathrm{X} \oplus \mathrm{Y}$
- XNOR $\overline{\mathrm{X} \oplus \mathrm{Y}}$

	X	Y	Z
	0	0	
	0	1	
	1	0	
	1	1	
	X	Y	Z
	0	0	
	0	1	
	1	0	
	1	1	
	X	Y	Z
	0	0	
	0	1	
	1	0	
	1	1	

Boolean expressions \Rightarrow logic gates

Example: $\mathrm{F}=(\mathrm{A} \cdot \mathrm{B})^{\prime}+\mathrm{C} \cdot \mathrm{D}$

$$
\begin{aligned}
& \text { A }- \\
& \text { B- } \\
& \text { C }- \\
& \text { D }-
\end{aligned}
$$

- Example: $\mathrm{F}=\mathrm{C} \cdot(\mathrm{A}+\mathrm{B})^{\prime}$

$$
\begin{array}{ll}
A & - \\
\text { B } & - \\
C & -
\end{array}
$$

Truth tables $\quad \Rightarrow$ logic gates

- Given a truth table
- Write the Boolean expression
- Minimize the Boolean expression
- Draw as gates
- Example:

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Example: A binary full adder

A	B	Cin	S Cout
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Sum =
Cout $=$

Full adder: Sum

Full adder: Carry-out

Many possible mappings

- Many ways to map expressions to gates
- Example: $\mathrm{Z}=\overline{\mathrm{A}} \bullet \overline{\mathrm{B}} \bullet(\mathrm{C}+\mathrm{D})=\overline{\mathrm{A}} \bullet \overline{\mathrm{B}} \bullet(\mathrm{C}+\mathrm{D})$

What is the optimal gate realization?

- We use the axioms and theorems of Boolean algebra to "optimize" our designs
- Design goals vary
- Reduce the number of gates?
- Reduce the number of gate inputs?
- Reduce number of chips and/or wire?
- How do we explore the tradeoffs?
- CAD tools
- Logic minimization: Reduce number of gates and complexity
- Logic optimization: Maximize speed and/or minimize power

Minimal set

- We can implement any logic function from NOT, NOR, and NAND
- Example: $(X$ and $Y)=\operatorname{not}(X$ nand $Y)$
- In fact, we can do it with only NOR or only NAND
- NOT is just NAND or NOR with two identical inputs

\mathbf{X}	\mathbf{Y}	\mathbf{X} nor \mathbf{Y}	\mathbf{X}	\mathbf{Y}	\mathbf{X} nand \mathbf{Y}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	1	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{0}$

- NAND and NOR are duals: Can implement one from the other $\boldsymbol{K} X \operatorname{nand} Y=\operatorname{not}((\operatorname{not} X) \operatorname{nor}(\operatorname{not} Y))$ $\boldsymbol{K} X \operatorname{nor} Y=\operatorname{not}((\operatorname{not} X) \operatorname{nand}(\operatorname{not} Y))$

