Lecture 19

◆ Logistics
 - HW7 due now
 - A few days off before HW8 kicks in
 - Midterm review session tomorrow 4:15 EEB125
 - Midterm 2 in class (45min long, starts at 10:35am)

◆ Last lecture
 - Moore and Mealy machines

◆ Today
 - A bigger example: Hungry Robot Ant in Maze

Robotic ant in a maze

◆ Robot ant, physical maze
 - Maze has no islands
 - Corridors are wider than ant
 - Design the robotic ant's brain to get to the food!

![Robotic ant in a maze diagram]
Robot ant specifics

- Sensors: L and R antennae, 1 if touching wall
- Actuators: F - forward step, TL/TR - turn left/right
- Goal: find way out of maze to get to food.
- Strategy: keep the wall on the right

Example: ant brain (special case 1)

- Left (L) Antenna touching the wall
Example: ant brain (special case 2)

- Ant Lost

Example: ant brain (special case 2)

- Ant Lost (another example)
Robot Ant behavior

A: Following wall, touching
 Go forward, turning left slightly

B: Following wall, not touching
 Go forward, turning right slightly

C: Break in wall
 Go forward, turning right slightly

D: Hit wall again
 Back to state A

E: Wall in front
 Turn left until...

F: ...we are here, same as state B

G: Turn left until...

LOST: Forward until we touch something

Notes & strategy

◆ Notes
 ■ Maze has no islands
 ■ Corridors are wider than ant
 ■ Don’t worry about startup
 ■ Assume a Moore machine
 ■ Assume D flip-flops

◆ Strategy
 ■ Keep the wall on the right
Design the ant-brain FSM

1. State diagram
2. State-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

Robot Ant behavior

A: Following wall, touching
 Go forward, turning
 left slightly

B: Following wall, not touching
 Go forward, turning
 right slightly

C: Break in wall
 Go forward, turning
 right slightly

D: Hit wall again
 Back to state A

E: Wall in front
 Turn left until...

F: ...we are here, same as
 state B

G: Turn left until...

LOST: Forward until we
 touch something

CSE370, Lecture 19
Notations

- **Sensors on L and R antennae**
 - Sensor = “1” if touching wall; “0” if not touching wall
 - L'R' = no wall
 - L'R = wall on right
 - LR' = wall on left
 - LR = wall in front

- **Movement**
 - F ≡ forward one step
 - TL ≡ turn left slightly
 - TR ≡ turn right slightly

1. **State Diagram**
2. State Transition Table

- Using symbolic states and outputs

<table>
<thead>
<tr>
<th>state</th>
<th>L</th>
<th>R</th>
<th>next state</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOST</td>
<td>0</td>
<td>0</td>
<td>LOST</td>
<td>F</td>
</tr>
<tr>
<td>LOST</td>
<td>-1</td>
<td>1</td>
<td>E/G</td>
<td>F</td>
</tr>
<tr>
<td>LOST</td>
<td>1</td>
<td>-1</td>
<td>E/G</td>
<td>F</td>
</tr>
<tr>
<td>E/G</td>
<td>0</td>
<td>0</td>
<td>B</td>
<td>TL</td>
</tr>
<tr>
<td>E/G</td>
<td>0</td>
<td>1</td>
<td>E/G</td>
<td>TL</td>
</tr>
<tr>
<td>E/G</td>
<td>1</td>
<td>0</td>
<td>E/G</td>
<td>TL</td>
</tr>
<tr>
<td>B</td>
<td>-1</td>
<td>0</td>
<td>C</td>
<td>TR, F</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>-1</td>
<td>A</td>
<td>TR, F</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>A</td>
<td>TL, F</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>E/G</td>
<td>TL, F</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>-1</td>
<td>C</td>
<td>TR, F</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>A</td>
<td>TR, F</td>
</tr>
</tbody>
</table>

3. State minimization

- Any equivalent states?
Sure! Now you can represent states with 2 bits

4. State encoding

<table>
<thead>
<tr>
<th>state L R</th>
<th>next state</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOST 0 0</td>
<td>LOST</td>
<td>F</td>
</tr>
<tr>
<td>LOST - 1</td>
<td>E/G</td>
<td>F</td>
</tr>
<tr>
<td>LOST 1 -</td>
<td>E/G</td>
<td>F</td>
</tr>
<tr>
<td>E/G 0 0</td>
<td>B/C</td>
<td>TL</td>
</tr>
<tr>
<td>E/G 0 1</td>
<td>E/G</td>
<td>TL</td>
</tr>
<tr>
<td>E/G 1 -</td>
<td>E/G</td>
<td>TL</td>
</tr>
<tr>
<td>A 0 0</td>
<td>B</td>
<td>TL, F</td>
</tr>
<tr>
<td>A - 1</td>
<td>A</td>
<td>TL, F</td>
</tr>
<tr>
<td>A 1 -</td>
<td>E/G</td>
<td>TL, F</td>
</tr>
<tr>
<td>B/C - 0</td>
<td>B/C</td>
<td>TR, F</td>
</tr>
<tr>
<td>B/C - 1</td>
<td>A</td>
<td>TR, F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>state L R</th>
<th>next state</th>
<th>outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0 0 0</td>
<td>0 0 1 0 0</td>
</tr>
<tr>
<td>0 0 - 1</td>
<td>0 1 1 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 1 -</td>
<td>0 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>1 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>1 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 1 1 -</td>
<td>0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 0 0</td>
<td>1 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 0 1 -</td>
<td>1 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>1 1 1 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 1 -</td>
<td>0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>1 1 1 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>1 1 1 1 0</td>
<td></td>
</tr>
</tbody>
</table>

CSE370, Lecture 19
5. Next state logic minimization

<table>
<thead>
<tr>
<th>state inputs</th>
<th>next state outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>X, Y, L, R</td>
<td>X', Y', F, TR, TL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inputs</th>
<th>F TR TL</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>00</td>
<td>0 1 0 0</td>
</tr>
<tr>
<td>01</td>
<td>1 1 0 1</td>
</tr>
<tr>
<td>01</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>10</td>
<td>1 1 1 0</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>11</td>
<td>1 1 1 0</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 0</td>
</tr>
</tbody>
</table>

6. Circuit Implementation

- Outputs are a function of the current state only - Moore machine
Extra credit
(worth 15pts equivalent in a midterm)

Design the robotic ant’s brain with virtual maze representation
- Due last day in class, Friday, June 6; printouts only
- Graded on clarity and completeness of explanation
- No questions will be answered

![Virtual maze diagram]

The maze

- Virtual maze
 - 128 x 128 grid
 - Stored in memory
 - 16384 8-bit words
 - XY is maze addresses
 - X is the ant’s horizontal position (7 bits)
 - Y is the ant’s vertical position (7 bits)
 - Each memory location says
 - 00000001 = No wall
 - 00000010 = North wall
 - 00000100 = West wall
 - 00010000 = South wall
 - 00100000 = East wall
 - 00100000 = Exit

Can have multiple walls
Example: 00001100
⇒ Walls on South and East
Design of different components

Predesigned:

- **Ant-Brain FSM**
 - Forward
 - Turn right
 - Turn left

- **SRAM**
 - Maze
 - Data

Submit the designs for:

- **X counter**
 - Forward
 - East
 - West
 - Preload
 - SRAM Address

- **Y counter**
 - North
 - South
 - Preload

- **Antennae logic**
 - L
 - R

- **Heading (shift register)**
 - North
 - South
 - East
 - West

Recommendations

- **Memory controller**
 - Move horizontally: Increment or decrement X
 - Move vertically: Increment or decrement Y

- **Shift register for heading**
 - N: 0001
 - W: 0010
 - S: 0100
 - E: 1000
 - Rotate right when ant turns right
 - Rotate left when ant turns left

- **Combinational logic for antennae logic**