## Lecture 19

## Logistics

- HW7 due now
- A few days off before HW8 kicks in
- Midterm review session tomorrow 4:15 EEB125
- Midterm 2 in class ( 45 min long, starts at 10:35am)
- Last lecture
- Moore and Mealy machines
- Today
- A bigger example: Hungry Robot Ant in Maze


## Robotic ant in a maze

Robot ant, physical maze

- Maze has no islands
- Corridors are wider than ant
- Design the robotic ant's brain to get to the food!



## Robot ant specifics

- Sensors: L and R antennae, 1 if touching wall
- Actuators: F - forward step, TL/TR - turn left/right
- Goal: find way out of maze to get to food.
- Strategy: keep the wall on the right



## Example: ant brain (special case 1)

- Left (L) Antenna touching the wall


Example: ant brain (special case 2)

- Ant Lost



## Example: ant brain (special case 2)

- Ant Lost (another example)



## Robot Ant behavior



## Notes \& strategy

- Notes
- Maze has no islands
- Corridors are wider than ant
- Don't worry about startup
- Assume a Moore machine
- Assume D flip-flops


## - Strategy

- Keep the wall on the right


## Design the ant-brain FSM

1. State diagram
2. State-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

Robot Ant behavior


## Notations

## - Sensors on L and R antennae

- Sensor = " 1 " if touching wall; "0" if not touching wall
$\boldsymbol{k}$ L'R' $\equiv$ no wall
$\boldsymbol{k}$ L'R $\equiv$ wall on right
$\boldsymbol{\mathcal { L }} \mathrm{LR}^{\prime} \equiv$ wall on left
$\boldsymbol{k} L R \equiv$ wall in front
- Movement
- $\mathrm{F} \equiv$ forward one step
- TL $\equiv$ turn left slightly
- TR $\equiv$ turn right slightly


## 1. State Diagram



## 2. State Transition Table



## 3. State minimization

Any equivalent states?


## Sure! Now you can represent states with 2 bits



## 4. State encoding

| state L R | next state | outputs | state input $\$$ <br> $X, Y \quad L \quad R$ | next sta $X+, Y+$ | outputs <br> F TRTL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LOST 00 | LOST | F | 0000 | 00 | 100 |
| LOST - 1 | E/G | F | 00-1 | 01 | 100 |
| LOST 1 - | E/G | F | 001 - | 01 | 100 |
| E/G 00 | B/C | TL | 0100 | 11 | 001 |
| E/G 01 | E/G | TL | 0101 | 01 | 001 |
| E/G 1- | E/G | TL | 011 - | 01 | 001 |
| A 00 | B | TL, F | 1000 | 11 | 101 |
| A - 1 | A | TL, F | $10-1$ | 10 | 101 |
| A 1 - | E/G | TL, F | 10 - | 01 | 101 |
| $B / C-0$ | B/C | TR, F | $11-0$ | 11 | 110 |
| $B / C-1$ | A | TR, F | $11-1$ | 10 | 110 |

## 5. Next state logic minimization



## 6. Circuit Implementation

- Outputs are a function of the current state only - Moore machine



## Extra credit

## (worth 15pts equivalent in a midterm)

Design the robotic ant's brain with virtual maze representation

- Due last day in class, Friday, June 6; printouts only
- Graded on clarity and completeness of explanation
- No questions will be answered



## The maze

- Virtual maze
- $128 \times 128$ grid
$\boldsymbol{k}$ Stored in memory
K 16384 8-bit words
- $Y X$ is maze addresses
$\boldsymbol{\mathcal { L }} X$ is the ant's horizontal position (7 bits)
$\boldsymbol{K} Y$ is the ant's vertical position (7 bits)
- Each memory location says
$\boldsymbol{k} 00000001 \equiv$ No wall
$\boldsymbol{<} 00000010 \equiv$ North wall
$\boldsymbol{k} 00000100 \equiv$ West wall
$\boldsymbol{K} 00001000 \equiv$ South wall
$\boldsymbol{k} 00010000$ 三 East wall

Can have multiple walls
Example: 00001100
$\Rightarrow$ Walls on South and East
$\boldsymbol{k} 00100000$ 三 Exit

## Design of different components

Predesigned:


Submit the designs for:


CSE370, Lecture 19


## Recommendations

- Memory controller
- Move horizontally: Increment or decrement $X$
- Move vertically: Increment or decrement $Y$
- Shift register for heading
- N: 0001
- W: 0010
- S: 0100
- E: 1000
- Rotate right when ant turns right
- Rotate left when ant turns left
- Combinational logic for antennae logic

