Lecture 18

- Logistics

- HW7 is due on Monday (and topic included in midterm 2)
- Midterm 2 on Wednesday in lecture slot
\boldsymbol{K} cover materials up to today's lecture
- Review session Tuesday 4:15pm in EEB125
- Last lecture
- Finish counter design
- More complex finite-state machines
- Today
- More and Mealy machines

Generalized FSM model: Moore and Mealy

- Combinational logic computes next state and outputs
- Next state is a function of current state and inputs
- Outputs are functions of
\boldsymbol{k} Current state (Moore machine)
\boldsymbol{K} Current state and inputs (Mealy machine)

Moore versus Mealy machines

Mealy machine Outputs depend on state and on inputs

Input changes can cause immediate output changes
(asynchronous)

Example 10 -> 01: Moore or Mealy?

- Circuits recognize $A B=10$ followed by $A B=01$
- What kinds of machines are they?

Example 01/10 detector: a Moore machine

Output is a function of state only

- Specify output in the state bubble

Example 01/10 detector: a Mealy machine

- Output is a function of state and inputs
- Specify outputs on transition arcs

reset	input	current state	next state	current output
1	-	-	A	0
0	0	A	B	0
0	1	A	C	0
0	0	B	B	0
0	1	B	C	1
0	0	C	B	1
0	1	C	C	0

Comparing Moore and Mealy machines

- Moore machines
+ Safer to use because outputs change at clock edge
- May take additional logic to decode state into outputs
- Mealy machines
+ Typically have fewer states
+ React faster to inputs - don't wait for clock
- Asynchronous outputs can be dangerous
- We often design synchronous Mealy machines
- Design a Mealy machine
- Then register the outputs

Synchronous (registered) Mealy machine

- Registered state and registered outputs
- No glitches on outputs
- No race conditions between communicating machines

Example 0 -> 1: Moore or Mealy?

Recognize $A, B=0,1$

- Mealy or Moore?

Registered Mealy
(actually Moore)

FSM design procedure reminder

- Counter-design procedure

1. State diagram
2. State-transition table
3. Next-state logic minimization
4. Implement the design

- FSM-design procedure

1. State diagram
2. state-transition table
3. State minimization
4. State encoding
5. Next-state logic minimization
6. Implement the design

Example: A parity checker

- Serial input string
- OUT=1 if odd \# of 1 s in input
- OUT=0 if even \# of 1 s in input
- Let's do this for Moore and Mealy

Example: A parity checker

1. State diagram
Moore

Mealy

Example: A parity checker

1. State-transition table
Moore

Present State	Input	Next State	Present Output			
Even	0	Even	0	Mealy		
Even	1	Odd	0			
Odd	0	Odd	1			
Odd	1	Even	1 Present State	Input	Next State	Present Output
			Even	0	Even	0
			Even	1	Odd	1
			Odd	0	Odd	1
			Odd	1	Even	0

Example: A parity checker

3. State minimization: Already minimized

- Need both states (even and odd)
- Use one flip-flop
Example: A parity checker

4. State encoding
Assignment
Even ef 0
Moore
Odd ≥ 1

Present State	Input	Next State	Present Output
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1

Mealy

Present State	Input	Next State	Present Output
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0
			15

Example: A parity checker

5. Next-state logic minimization

- Assume D flip-flops
- Next state = (present state) XOR (present input)

6. Implement the design

CSE370, Lecture 18

Example: A vending machine

15 cents for a cup of coffee

- Doesn't take pennies or quarters

Doesn't provide any change

Last lecture

We had mix of
Moore and Mealy

A vending machine: Moore machine

A vending machine: Mealy machine

symbolic state table

A vending machine: Implementation

