
Lecture 11

Logistics
HW3 due now
Lab4 goes on as normal next weekLab4 goes on as normal next week
Tuesday review 6pm(ish) place TBD

Last lecture
"Switching-network" logic blocks

Multiplexers and Demultiplexers

Today
PLDs

1CSE370, Lecture 11

PLDs
PLAs
PALs

ROMs

The “WHY” slide

Programmable Logic Arrays (PLAs)
Often you want to have a look up table of functions stored away
somewhere in your device Rather than having specific circuitssomewhere in your device. Rather than having specific circuits
build every time, it would be nice to have a “general-purpose”
structure that could be “programmed” for a specific usage. PLAs
have a generic structure that allows any function to be
expressed and stored.
And it is nice if it is reprogrammable. Some PLAs are
reprogrammable (like your memory sticks).

2CSE370, Lecture 11

Programmable logic (PLAs & PALs)

Concept: Large array of uncommitted AND/OR gates
Actually NAND/NOR gates
You program the array by making or breaking connections

• • •

inputs

product
AND
array

OR

You program the array by making or breaking connections
Programmable block for sum-of-products logic

3CSE370, Lecture 11

• • •

outputs

product
terms

array array

Programming the wire connections

Fuse: Comes connected; break unwanted connections
Anti-fuse: Comes disconnected; make wanted connections

A B CA B C

AB

B'C

AC'

F0 = A + B'C'
F1 = AC' + AB
F2 = B'C' + AB
F3 = B'C + A

4CSE370, Lecture 11
F1 F2 F3F0

B'C'

A
1

Short-hand notation

Draw multiple wires as a single wire or bus
× signifies a connection

After Programming

AB

A'B'

CD'

A B C D

Before Programming

5CSE370, Lecture 11

F0 F1

C'D

F0 = AB + A'B'
F1 = CD' + C'D

A B C

Think of as a memory-address decoder
Memory bits

PLA example

F1 = ABC
F2 = A + B + C
F3 = A' B' C'

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

F3 = A B C
F4 = A' + B' + C'
F5 = A xor B xor C
F6 = A xnor B xnor C

6CSE370, Lecture 11

0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

ABC'

ABC

F1 F2 F3 F4 F5
F6

PLAs versus PALs

We've been looking at PLAs
Fully programmable AND / OR arrays

Programmable array logic (PAL)
Programmable AND array
OR array is prewired

Cheaper and faster than PLAs

7CSE370, Lecture 11

00 0 0 X 1 00 0 1 X 0

Example: BCD to Gray code converter

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1

AAB
CD 00 01 11 10

AAB
CD 00 01 11 10

01 0 1 X 1

11 0 1 X X

10 0 1 X X

01 0 1 X 0

11 0 0 X X

10 0 0 X X

00 0 0 X 1

0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X

D

C

B
K-map for W

D

C

B

A

00 0 1 X 0

AB
CD 00 01 11 10

AAB
CD 00 01 11 10

K-map for X

8CSE370, Lecture 11

01 1 0 X 0

11 0 1 X X

10 1 0 X X

1 1 1 0 X X X X
1 1 1 1 X X X X D

01 0 1 X 0

11 1 1 X X

10 1 1 X X
C

B

D

C

B
K-map for Y K-map for Z

Example: BCD to Gray --- Wire a PLA

A B C DMinimized functions:
W = A + BC + BD
X = BC'X = BC
Y = B + C
Z = A'B'C'D + BCD

+ AD' + B'CD'

9CSE370, Lecture 11
W X Y Z

Example: Wire a PAL

Minimized functions:
W = A + BC + BD
X = BC'X = BC
Y = B + C
Z = A'B'C'D + BCD

+ AD' + B'CD’

Fine example for the use of PAL
(because no shared AND terms)

10CSE370, Lecture 11

Many AND gates wasted, but
still faster and cheaper than PLA

Compare implementations for this example

PLA:
No shared logic terms in this example
10 decoded functions (10 AND gates)10 decoded functions (10 AND gates)

PAL:
Z requires 4 product terms

16 decoded functions (16 AND gates)
6 unused AND gates

This decoder is a best candidate for PLAs/PALs
10 of 16 possible inputs are decoded

11CSE370, Lecture 11

10 of 16 possible inputs are decoded
No sharing among AND terms

Another option?
Yes — a ROM

Read-only memories (ROMs)

Two dimensional array of stored 1s and 0s
Input is an address ⇒ ROM decodes all possible input addresses
Stored row entry is called a "word"
ROM output is the decoded word

inputs

n address lines

n

• • •

memory
array

12CSE370, Lecture 11

outputs

2n word
lines

decoder

• • •

array
(2n words
by m bits)

ROM details

Similar to a PLA but with a fully decoded AND array
Completely flexible OR array (unlike a PAL)
Extremely dense: One transistor per stored bitExtremely dense: One transistor per stored bit

decoder

2n-1

0

+5V

1

2

Only one word line
is active at any time

13CSE370, Lecture 11

0 n-1
Address

0

Bit lines: Normally pulled high through
resistor. If transistor stores a zero, then
line pulls low when row is selected

0 m-1
Outputs

Two-level combinational logic using a ROM

Use a ROM to directly store a truth table
No need to minimize logic
Example: F0 = A'B'C + AB'C' + AB'C

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0

ROM
8 words x 4 bits/word

Example: F0 = A B C + AB C + AB C
F1 = A'B'C + A'BC' + ABC
F2 = A'B'C' + A'B'C + AB'C'
F3 = A'BC + AB'C' + ABC'

You specify whether
to store 1 or 0 in each

14CSE370, Lecture 11

0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

8 words x 4 bits/word

address outputs
A B C F0 F1 F2 F3

location in the ROM

ROMs versus PLAs/PALs

ROMs
Benefits

Quick to design simple denseQuick to design, simple, dense
Limitations

Size doubles for each additional input
Can't exploit don't cares

PLAs/PALs
Benefits

Logic minimization reduces size
PALs faster/cheaper than PLAs

15CSE370, Lecture 11

PALs faster/cheaper than PLAs
Limitations

PAL OR-plane has hard-wired fan-in

Another alternative: Field programmable gate arrays
Learn a bit more later in this class

Example: BCD to 7-segment display controller

The problem
Input is a 4-bit BCD digit (A, B, C, D)
Need signals to drive a display (7 outputs C0 C6)

c0 c1 c2 c3 c4 c5 c6

c1c5

c2c4 c6

c0

c3

Need signals to drive a display (7 outputs C0 – C6)

16CSE370, Lecture 11

BCD to 7–segment
control-signal

decoder

A B C D

A B C D C0 C1 C2 C3 C4 C5 C6
0 0 0 0 1 1 1 1 1 1 0

Formalize the problem

Truth table
Many don’t cares

0 0 0 1 0 1 1 0 0 0 0
0 0 1 0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 1 0 0 1
0 1 0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1 1
0 1 1 0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1

Choose implementation
target

If ROM, we are done
Don't cares imply PAL/PLA
may be good choice

Implement design

17CSE370, Lecture 11

1 0 0 1 1 1 1 0 0 1 1
1 0 1 X X X X X X X X
1 1 X X X X X X X X X

Implement design
Minimize the logic
Map into PAL/PLA

A A A A A

Sum-of-products implementation

15 unique product terms if we minimize individually

C0 = A + B D + C + B' D'
C1 = C' D' + C D + B'

1 0 X 1

0 1 X 1

1 1 X X

1 1 X X

D

A

B

C

1 1 X 1

1 0 X 1

1 1 X X

1 0 X X

D

A

B

C

0 1 X 1

A

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 0 X 1

0 1 X 0

1 0 X X

1 1 X X

D

A

B

C

1 0 X 1

0 0 X 0

0 0 X X

1 1 X X

D

A

B

C

1 1 X 1

A

18CSE370, Lecture 11

C2 = B + C' + D
C3 = B' D' + C D' + B C' D + B' C
C4 = B' D' + C D'
C5 = A + C' D' + B D' + B C'
C6 = A + C D' + B C' + B' C

0 1 X 1

1 0 X X

1 1 X X

D

B

C

0 1 X 1

0 0 X X

0 1 X X

D

B

C

4 input, 7 output PLA: 15 AND gates
PAL: 4 product terms per output (28 AND gates)

If choosing PLA: better SOP implementation

Can do better than 15 product terms
Share terms among outputs ⇒ only 9 unique product terms

Each term not necessarily minimized

C0 = BC'D + CD + B'D' + BCD' + AC0 = A + BD + C + B'D'

C2 1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

1 1 X 1

1 1 X 1

1 1 X X

0 1 X X

D

A

B

C

C2

Each term not necessarily minimized

19CSE370, Lecture 11

C1 = B'D + C'D' + CD + B'D'
C2 = B'D + BC'D + C'D' + CD + BCD'
C3 = BC'D + B'D + B'D' + BCD'
C4 = B'D' + BCD'
C5 = BC'D + C'D' + A + BCD'
C6 = B'C + BC' + BCD' + A

C1 = C'D' + CD + B'
C2 = B + C' + D
C3 = B'D' + CD' + BC'D + B'C
C4 = B'D' + CD'
C5 = A + C'D' + BD' + BC'
C6 = A + CD' + BC' + B'C

BC'

A B C D

PLA implementation

C0 = BC'D + CD + B'D' + BCD' + A
C1 = B'D + C'D' + CD + B'D'
C2 = B'D + BC'D + C'D' + CD + BCD'

BC

B'C

B'D

BC'D

C'D'

CD

B'D'

C3 = BC'D + B'D + B'D' + BCD'
C4 = B'D' + BCD'
C5 = BC'D + C'D' + A + BCD'
C6 = B'C + BC' + BCD' + A

20CSE370, Lecture 11

A

BCD'

C0 C1 C2 C3 C4 C5 C6 C7

Example: Logical function unit

Multipurpose functional block
3 control inputs (C) specify function
2 data inputs (operands) A and B

C0 C1 C2 Function Comments
0 0 0 1 always 1
0 0 1 A + B logical OR
0 1 0 (A • B)' logical NAND
0 1 1 A B l i l

3 control inputs: C0, C1, C2
2 data inputs: A, B

2 data inputs (operands) A and B
1 output (same bit-width as input operands)

21CSE370, Lecture 11

0 1 1 A xor B logical xor
1 0 0 A xnor B logical xnor
1 0 1 A • B logical AND
1 1 0 (A + B)' logical NOR
1 1 1 0 always 0

1 output: F

Implementation choice:
lti l ith di t t

C0 C1 C2 A B F
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 1
0 0 1 0 0 0

Formalize the problem and solve

multiplexer with discrete gates0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 0 1 1
0 1 0 1 0 1
0 1 0 1 1 0
0 1 1 0 0 0
0 1 1 0 1 1
0 1 1 1 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 0 0 1 1 1
1 0 1 0 0 0

1

A
B

A
B

0
1
2
3
4
5

8:1 MUX
F

22CSE370, Lecture 11

1 0 1 0 1 0
1 0 1 1 0 0
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 0 1 0
1 1 0 1 0 0
1 1 0 1 1 0
1 1 1 0 0 0
1 1 1 0 1 0
1 1 1 1 0 0
1 1 1 1 1 0

0

A
B

C2C0 C1

5
6
7
S2 S1 S0

