
Lecture 6

Logistics
HW2 due on Wednesday
Lab 2 this weekLab 2 this week

Last lecture
Canonical forms
NAND and NOR

Today’s lecture
More NAND and NOR and pushing bubbles
L i i lifi ti Vi li ti t h i

1CSE370, Lecture 6

Logic simplification: Visualization techniques
Boolean cubes
Karnaugh maps

The “WHY” slide

Converting to use NAND and NOR
NAND and NOR are more efficient gates than AND or OR (and
therefore more common). Your computer is built almost exclusivelytherefore more common). Your computer is built almost exclusively
on NAND and NOR gates. It is good to knowhow to convert any
logic circuits to a NAND/NOR circuit.

Pushing bubbles
It is always good to remember logical/theoretical concepts
visually. This is one way to remember the NAND/NOR
conversion easily.

2CSE370, Lecture 6

Logic Simplification
If you are building a computer or a cool gadget, you want to
optimize on size and efficiency. Having extra unnecessary
operations/gates is not great. We teach nice techniques to allow
logic simplifications.

NAND and NOR (logic gates)

de Morgan's
Standard form: A'B' = (A + B)' A' + B' = (AB)'
Inverted: A + B = (A'B')' (AB) = (A' + B')'Inverted: A + B = (A B) (AB) = (A + B)

AND with complemented inputs ≡ NOR
OR with complemented inputs ≡ NAND
OR ≡ NAND with complemented inputs
AND ≡ NOR with complemented inputs

pushing
the

bubble

3CSE370, Lecture 6

NAND

OR AND

NOR NAND

OR AND

NOR

Converting to use NAND/NOR

Introduce inversions ("bubbles")
Introduce bubbles in pairs

Conserve inversionsConserve inversions
Do not alter logic function

Example
AND/OR to NAND/NAND

A A

Z = AB + CD
= (A'+B')'+(C'+D')'
= [(A'+B')(C'+D')]'
= [(AB)'(CD)']'

4CSE370, Lecture 6

B

C

D

Z B

C

D

Z
NAND

NAND

NAND

Converting to use NAND/NOR (con’t)

Example: AND/OR network to NOR/NOR

Z = AB+CDZ AB+CD
= (A'+B')'+(C'+D')’
= [(A'+B')'+(C'+D')’]’’
= {[(A'+B')'+(C'+D')']'}'

A

B

A

B
NOR

5CSE370, Lecture 6

B

C

D

Z B

C

D

Z

NOR

NOR

Converting to use NAND/NOR (con’t)

Example: OR/AND to NAND/NAND

A

B

C

D

Z Z

A

B

C

D

NAND

NAND

NAND

6CSE370, Lecture 6

Converting to use NAND/NOR(con’t)

Example: OR/AND to NOR/NOR

A

B

C

D

Z Z

A

B

C

D

NOR

NOR

NOR

7CSE370, Lecture 6

Example of bubble pushing: before pushing

8CSE370, Lecture 6

Example of bubble pushing: NAND/NAND

9CSE370, Lecture 6

‘

Example of bubble pushing: NOR/NOR

‘

10CSE370, Lecture 6

Goal: Minimize two-level logic expression

Algebraic simplification
not an systematic procedure
hard to know when we reached the minimum

Just program it!! Computer-aided design tools
require very long computation times (NP hard)
heuristic methods employed – "educated guesses”

Visualization methods are useful

11CSE370, Lecture 6

our brain is good at figuring things out over computers
many real-world problems are solvable by hand

Key tool: The Uniting Theorem

The uniting theorem → A(B’+B) = A

The approach:The approach:
Find some variables don’t change (the A’s above) and others
do (the B’s above)
Eliminate the changing variables (the B’s)

A B F
0 0 1 A has the same value in both “on-set” rows

12CSE370, Lecture 6

0 0 1
0 1 1
1 0 0
1 1 0

⇒ keep A

B has a different value in the two rows
⇒ eliminate B

F = A'B'+A'B = A'(B+B') = A'

Boolean cubes

Visualization tool for the uniting theorem
n input variables = n-dimensional "cube"

1-cube 2-cube
X

X

Y
0 1

11

00

01

10

111
1111

0111
011 0011

1011

13CSE370, Lecture 6

3-cube
4-cube

X

Y Z W

X

Y Z

000 0000
1000

101

100
0100

0010

1100

Mapping truth tables onto Boolean cubes

ON set = solid nodes

OFF set = empty nodesOFF set empty nodes

B

01

F
11

Look for on-set adjacent
to each other

Sub-cube (a line) comprises
two nodes

A B F
0 0 1
0 1 0

14CSE370, Lecture 6

A

B

00 10 A varies within the sub-cube;
B does not

This sub-cube represents B'

1 0 1
1 1 0

Example using Boolean cube

Binary full-adder carry-out logic

On-set is covered by the OR of three 1-subcubes

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

111

B
C 101

(A'+A)BCin

A(B+B')Cin

15CSE370, Lecture 6

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

A

Cin

000

0

AB(Cin'+Cin)

Cout = BCin+AB+ACin

Another example using Boolean cube

On-set is covered by the OR of one 2-D subcubes and
one 3-D subcubes

A B Cin Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

111

B
C

101

(A'+A)BCin

A(B+B')(Cin+Cin‘)

16CSE370, Lecture 6

1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

A

Cin

000

Cout = BCin+A

M-dimensional cubes in n-dimensional space

In a 3-cube (three variables):
A 0-cube (a single node) yields a term in 3 literals
A 1-cube (a line of two nodes) yields a term in 2 literalsA 1-cube (a line of two nodes) yields a term in 2 literals
A 2-cube (a plane of four nodes) yields a term in 1 literal
A 3-cube (a cube of eight nodes) yields a constant term "1"

F(A,B,C) = ∑m(4,5,6,7)

On-set forms a square (a 2-D cube)
B C

111

101

011

010 110

17CSE370, Lecture 6

A is asserted (true) and unchanging
B and C vary

This sub-cube represents the literal A

A

B C

000

101

100

Karnaugh maps (K-map)

Flat representation of Boolean cubes
Easy to use for 2– 4 dimensions A B F
Harder for 4 – 6 dimensions
Virtually impossible for 6+ dimensions

Use CAD tools

Help visualize adjacencies
On-set elements that have one variable
changing are adjacent

0 1
A

B

0 0 1
0 1 0
1 0 1
1 1 0

0
1
2
3

18CSE370, Lecture 6

0 2

1 3

B
0

1

1

0 0

1

2, 3, and 4 dimensional K-maps

Uses Gray code: Only one bit changes between cells
Example: 00 → 01 → 11 → 10

0 4 12 8

1 5 13 9

AB
CD

A

D

00 01 11 10

00

010 2 6 4
0

AB A
00 01 11 10C0 1

A
B

0
0 2

A

19CSE370, Lecture 6

C

1 5 13 9

3 7 15 11

2 6 14 10

D
11

10

0 2 6 4

1 3 7 5
1

B

B

C1
1 3B

Adjacencies

Wrap–around at edges
First column to last column
Top row to bottom rowTop row to bottom row

000

001

010

011

110

111

100

101

0

1

AB A
00 01 11 10C

C
B C

111

101001

011

010

0 2 6 4

20CSE370, Lecture 6

001 011 111 1011

B

C

A000 100
1 3 7 5

K-map minimization example: 2 variables

1 1

0 0

0 1
A

B
0

1
0

1 3

2

A B F
0 0 1
0 1 0
1 0 1
1 1 0

0
1
2
3

F = B'

21CSE370, Lecture 6

