
Lecture 6

Logistics
HW2 due on Wednesday
Lab 2 this weekLab 2 this week

Last lecture
Canonical forms
NAND and NOR

Today’s lecture
More NAND and NOR and pushing bubbles
L i i lifi ti Vi li ti t h i
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Logic simplification: Visualization techniques
Boolean cubes
Karnaugh maps 

The “WHY” slide

Converting to use NAND and NOR
NAND and NOR are more efficient gates than AND or OR (and 
therefore more common). Your computer is built almost exclusivelytherefore more common).  Your computer is built almost exclusively 
on NAND and NOR gates.  It is good to knowhow to convert any 
logic circuits to a NAND/NOR circuit.

Pushing bubbles
It is always good to remember logical/theoretical concepts 
visually.  This is one way to remember the NAND/NOR 
conversion easily.
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Logic Simplification
If you are building a computer or a cool gadget, you want to 
optimize on size and efficiency.  Having extra unnecessary 
operations/gates is not great.  We teach nice techniques to allow 
logic simplifications.



NAND and NOR (logic gates)

de Morgan's
Standard form: A'B' = (A + B)' A' + B' = (AB)'
Inverted: A + B = (A'B')' (AB) = (A' + B')'Inverted: A + B = (A B ) (AB) = (A  + B )

AND with complemented inputs ≡ NOR 
OR with complemented inputs ≡ NAND
OR ≡ NAND with complemented inputs 
AND ≡ NOR with complemented inputs 

pushing
the 

bubble
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Converting to use NAND/NOR

Introduce inversions ("bubbles")
Introduce bubbles in pairs

Conserve inversionsConserve inversions
Do not alter logic function

Example
AND/OR to NAND/NAND

A A

Z = AB + CD
= (A'+B')'+(C'+D')'
= [(A'+B')(C'+D')]'
= [(AB)'(CD)']'
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Converting to use NAND/NOR (con’t)

Example: AND/OR network to NOR/NOR

Z = AB+CDZ   AB+CD
= (A'+B')'+(C'+D')’
= [(A'+B')'+(C'+D')’]’’
= {[(A'+B')'+(C'+D')']'}'

A

B

A

B
NOR
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Converting to use NAND/NOR (con’t)

Example: OR/AND to NAND/NAND

A

B
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Z Z
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Converting to use NAND/NOR(con’t)

Example: OR/AND to NOR/NOR

A

B

C

D

Z Z
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NOR

NOR
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Example of bubble pushing: before pushing
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Example of bubble pushing: NAND/NAND
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‘

Example of bubble pushing: NOR/NOR

‘

10CSE370, Lecture 6



Goal: Minimize two-level logic expression

Algebraic simplification
not an systematic procedure
hard to know when we reached the minimum

Just program it!!  Computer-aided design tools
require very long computation times (NP hard)
heuristic methods employed – "educated guesses”

Visualization methods are useful
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our brain is good at figuring things out over computers
many real-world problems are solvable by hand

Key tool: The Uniting Theorem

The uniting theorem → A(B’+B) = A

The approach:The approach:
Find some variables don’t change (the A’s above) and others 
do (the B’s above)
Eliminate the changing variables (the B’s)

A B F
0 0 1 A has the same value in both “on-set” rows
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0 0 1
0 1 1
1 0 0
1 1 0

⇒ keep A

B has a different value in the two rows
⇒ eliminate B

F = A'B'+A'B = A'(B+B') = A'



Boolean cubes

Visualization tool for the uniting theorem 
n input variables = n-dimensional "cube"

1-cube 2-cube
X

X

Y
0 1

11

00

01

10

111
1111

0111
011 0011

1011
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3-cube
4-cube

X

Y Z W

X

Y Z

000 0000
1000

101

100
0100

0010

1100

Mapping truth tables onto Boolean cubes

ON set = solid nodes

OFF set = empty nodesOFF set  empty nodes

B

01

F
11

Look for on-set adjacent 
to each other

Sub-cube (a line) comprises 
two nodes

A B F
0 0 1
0 1 0
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A

B

00 10 A varies within the sub-cube;
B does not

This sub-cube represents B'

1 0 1
1 1 0



Example using Boolean cube

Binary full-adder carry-out logic

On-set is covered by the OR of three 1-subcubes

A B Cin      Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

111

B
C 101

(A'+A)BCin

A(B+B')Cin
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1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

A

Cin

000

0

AB(Cin'+Cin)

Cout = BCin+AB+ACin

Another example using Boolean cube

On-set is covered by the OR of one 2-D subcubes and 
one 3-D subcubes

A B Cin      Cout
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

111

B
C

101

(A'+A)BCin

A(B+B')(Cin+Cin‘)
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1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

A

Cin

000

Cout = BCin+A



M-dimensional cubes in n-dimensional space

In a 3-cube (three variables):
A 0-cube (a single node) yields a term in 3 literals
A 1-cube (a line of two nodes) yields a term in 2 literalsA 1-cube (a line of two nodes) yields a term in 2 literals
A 2-cube (a plane of four nodes) yields a term in 1 literal
A 3-cube (a cube of eight nodes) yields a constant term "1"

F(A,B,C) = ∑m(4,5,6,7)

On-set forms a square (a 2-D cube)
B C

111

101

011

010 110
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A is asserted (true) and unchanging
B and C vary

This sub-cube represents the literal A

A

B C

000

101

100

Karnaugh maps (K-map)

Flat representation of Boolean cubes
Easy to use for 2– 4 dimensions A B F
Harder for 4 – 6 dimensions
Virtually impossible for 6+ dimensions

Use CAD tools

Help visualize adjacencies
On-set elements that have one variable 
changing are adjacent 

0 1
A

B

0 0 1
0 1 0
1 0 1
1 1 0

0
1
2
3
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0 2

1 3
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2, 3, and 4 dimensional K-maps

Uses Gray code: Only one bit changes between cells
Example: 00 → 01 → 11 → 10

0 4 12 8

1 5 13 9

AB
CD

A

D

00 01 11 10

00

010 2 6 4
0

AB A
00 01 11 10C0 1

A
B

0
0 2

A
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C

1 5 13 9

3 7 15 11

2 6 14 10

D
11

10

0 2 6 4

1 3 7 5
1

B

B

C1
1 3B

Adjacencies

Wrap–around at edges
First column to last column
Top row to bottom rowTop row to bottom row

000

001

010

011

110

111

100

101

0

1

AB A
00 01 11 10C

C
B C

111

101001

011

010

0 2 6 4
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001 011 111 1011

B

C

A000 100
1 3 7 5



K-map minimization example: 2 variables

1 1

0 0

0 1
A

B
0

1
0

1 3

2

A B F
0 0 1
0 1 0
1 0 1
1 1 0

0
1
2
3

F = B'
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