Overview
- Last lecture
 - Introduction to sequential logic and systems
 - The basic concepts
 - A simple example
- Today
 - Latches
 - Flip-flops
 - Edge-triggered D
 - Master-slave
 - Timing diagrams

The D latch
- Output depends on clock
 - Clock high: Input passes to output
 - Clock low: Latch holds its output
- Latch are level sensitive and transparent

The D flip-flop
- Input sampled at clock edge
 - Rising edge: Input passes to output
 - Otherwise: Flip-flop holds its output
- Flip-flops are rising-edge triggered, falling-edge triggered, or master-slave

Terminology & notation
Rising-edge triggered D flip-flop
Input
DClock
Output
DQ
Output

Falling-edge triggered D flip-flop
Input
DClock
Output
DQ
Output

The master-slave D
Input
Master D latch
Slave D latch
Output

Class example: Draw the timing diagram
Flip-flop timing

- Setup time t_{ss}: Amount of time the input must be stable before the clock transitions high (or low for negative-edge triggered FF)
- Hold time t_h: Amount of time the input must be stable after the clock transitions high (or low for negative-edge triggered FF)

There is a timing "window" around the clock edge during which the input must remain stable.

Flip-flop timing (cont’d)

- Timing constraints
 - Must meet setup and hold times
 - Must meet minimum clock width
 - Will have propagation delays (low to high & high to low)

![Flip-flop timing diagram](image-url)