
February 24, 2006 UW CSE

Computer Organization:
A real processor

Steven Balensiefer

February 24, 2006 UW CSE

Background

We built a model processor
You get to make it work

Heavily based on MIPS2000
Described by Patterson & Hennessy

Single-cycle design
All operations take 1 (long) cycle

February 24, 2006 UW CSE

Instruction Set Specs

32 registers
Load-Store Architecture
Word Addressing
3 Formats for Instructions

Register to Register
Immediate
Jump

February 24, 2006 UW CSE

Instruction Encodings
R-format: | op | rs | rt | rd | shft | func |
r3 = r1 + r2 | ALU | r1 | r2 | r3 | X | ADD|

I-format | op | rs | rt | addr/immediate|
r3 = imm(r2) |Load| r2 | r3 | imm |

J-format: |op | target address |
jal hanoi | JAL | addr(hanoi) |

February 24, 2006 UW CSE

Mips2000

February 24, 2006 UW CSE

Program Counter
assign offset = {{16{Inst[15]}},Inst}; // sign

extend the immediate
assign Branch = Next + offset;
assign Jump = {Next[31:26],Inst[25:0]}; //

used by J instruction

// There are 4 possible sources for PC
// 0. PC = Next (Move to next Instruction)
// 1. PC = Next + offset (Conditional

Branch)
// 2. PC = Reg (Jump to Register value)
// 3. PC = Next[31:26],jump_target(J

instruction)

assign PC = (PCSel[1])?
((PCSel[0])? Jump : Reg) :
((PCSel[0])? Branch : Next);

February 24, 2006 UW CSE

Controller
Skeleton Code:
…
ADDI: begin

wrDataSel = 2'bxx;
mw = 1'bx;
mr = 1'bx;
PCSel = 2'bxx;
srcB = 1'bx;
regWrite = 1'bx;
wrRegSel = 2'bxx;
op = 6'bxxxxxx;

end

February 24, 2006 UW CSE

Register File
// decide which register is the one that might be

written to (depends on instruction)
// 00 – rd, 01 – rt, 1X – hardwired to 31 for JAL
assign wrReg = wrRegSel[1] ?

5'b11111 : (wrRegSel[0] ? rd : rt);
// do two reads and, optionally, one write with the

register file
// read two registers and send them to the ALU
assign RegA = RegFile[rs];
assign RegB = RegFile[rt];

// write into a register (but not the register storing
our constant 0)

always @(posedge clk) begin
if (regWrite && (wrReg != 0)) begin
RegFile[wrReg] = WriteData;

end
end

February 24, 2006 UW CSE

ALU
// use srcB to select between RegB and Imm
assign B = (srcB === 0)? RegB : Imm;

always @(A or B or op) begin
case (op)
6'b000001: result = A + B;
…

default: result = 32'hxxxxxxxx;
endcase
zero = (result == 32'h00000000);
neg = result[31];

end

February 24, 2006 UW CSE

Data Memory
Address from ALU
Data from Reg B

Memory-Mapped I/O
SW to xFFFFFFF
Buffers / Displays

(See dmemory.v for more)

February 24, 2006 UW CSE

Miscellaneous
WrRegSel:

// wrDataSel
// 00: Out = ALU
// 01: Out = MEM
// 1X: Out = PC + 1

SignExtender:
convert 16-bit to 32-bit

in(15:0)

out(31:0)

signEx

Inst(15:0)

February 24, 2006 UW CSE

Global View

February 24, 2006 UW CSE

R-Format Operations
Func Operation PC comment
ADD rd = rs + rt PC++

SUB rd = rs – rt PC++

PC++

PC=rs

SLT rd = (rs < rt) ? 1 : 0 Set on less than

JR No change Jump to Register

February 24, 2006 UW CSE

I-Format Ops:
Operation PC Comment

ADDI rt = rs+SE(imm) PC++

ORI rt = rs | imm PC++

LUI rt = imm << 16 PC++ Load upper
immed

LW rt = MEM[rs+se(imm)] PC++

SW MEM[rs+se(imm)] = rt PC++

BEQ (rs == rt)? PC+1+(0|imm)

February 24, 2006 UW CSE

J-Format Ops:
Func Operation PC comment
J PC = target a.k.a GOTO

JAL r31 = PC+1 PC = target Jump and Link

JAL stores next address, jumps to target (a.k.a fn call)

February 24, 2006 UW CSE

Final Tips:
Verilog uses “?” for Don’t Cares

Waveforms will make things easier

Be sure to set clk and reset

February 24, 2006 UW CSE

Programming Example

Given: A is an array of size B

Goal: Compute

I’ll just use a for loop …

∑
=

B

i

iA
0

][

February 24, 2006 UW CSE

Assembly Language

Variables Registers
Array Access Load (name+offset)
Minimal Control Structures

Branches (A < B, A >= B, A != B)
Jumps

February 24, 2006 UW CSE

C to ASM
High Level Language

C = 0;
for(i = 0; i < B; i = i+1) {

C = C + A[i];
}

Psuedo-Asm
C = 0;
i = 0;

Loop: bge i, B, Exit
temp = A+i
temp2 = load 0(temp)

C = C + temp2;
i = i + 1;
j Loop

Exit: …

February 24, 2006 UW CSE

ASM to RTL
r3 = r0, PC++
r4 = r0, PC++
Loop: PC =

(r4 ≥ r2) ? Exit : PC+1
r6 = MEM[r4+r1],PC++
r3 = r3 + r6, PC++
r4 = r4 + 1, PC++
PC = LOOP
Exit:

C = 0;
i = 0;

Loop: bge i, B, Exit
temp = load A[i];
C = C + temp;
i = i + 1;
j Loop

Exit: …

	Computer Organization: �A real processor
	Background
	Instruction Set Specs
	Instruction Encodings
	Mips2000
	Program Counter
	Controller
	Register File
	ALU
	Data Memory
	Miscellaneous
	Global View
	R-Format Operations
	I-Format Ops:
	J-Format Ops:
	Final Tips:
	Programming Example
	Assembly Language
	C to ASM
	ASM to RTL

