Overview Last lecture Sequential Verilog Today Review of D latches and flip-flops T flip-flops and SR latches State diagrams Asynchronous inputs

State diagrams • How do we characterize logic circuits? ■ Combinational circuits: Truth tables ■ Sequential circuits: State diagrams • First draw the states ■ States ≡ Unique circuit configurations • Second draw the transitions between states ■ Transitions ≡ Changes in state caused by inputs

System considerations

- Use edge-triggered flip-flops wherever possible
 - Avoid latches
 - Most common: Master-slave D
- ◆ Basic rules for correct timing
 - Clock flip-flops synchronously (all at the same time)

 ✓ No flip-flop changes state more than once per clock cycle
 - Avoid mixing positive-edge triggered and negative-edge triggered flip-flops in the same circuit

15

CSE370, Lecture 16

Asynchronous inputs

- Clocked circuits are synchronous
 - Circuit changes state only at clock edges
 - Signals (voltages) settle in-between clock edges
- ◆ Unclocked circuits or signals are asynchronous
 - No master clock
 - Real-world inputs (e.g. a keypress) are asynchronous
- Synchronous circuits have asynchronous inputs
 - Reset signal, memory wait, user input, etc.Inputs "bounce"

 - Inputs can change at any time
 We must synchronize the input to our clock ✔ Inputs will violate flip-flop setup/hold times

CSE370, Lecture 16 16

Debouncing Switch inputs bounce i. e. don't make clean transitions Can use SR latch for debouncing Eliminates dynamic hazards "Cleans-up" inputs 3.3V -3.3V CSE370, Lecture 16 17

