Lecture 11: Multi-Level Logic

CSE 370, Autumn 2007
Benjamin Ylvisaker

Where We Are

- Last lecture: Quine-McCluskey Minimization
- This lecture: Multi-Level Logic
- Next lecture: Circuit Delay and Timing
- Homework 4 in progress
- Lab 3 done; lab 4 next week

2-Level Minimum Circuits are Not Always the Best Solution

- Important circuit metrics:
 - Size
 - Speed
 - Complexity
 - Energy efficiency
- How we approximate these metrics:
 - Number and kind of gates
 - Number of gate inputs
 - Circuit depth

Example: Full Adder Sum Output
More Extreme Example: 2-Bit Adder

No Simple Methods

- For 2-level minimization we have:
 - K-maps
 - Quine-McCluskey
 - Espresso

- For multi-level minimization we have:
 - Lots of heuristics
 - SIS

Factoring

- \(Z = ADF + AEF + BDF + BEF + CDF + CEF + G \)
 - AND3: 6 OR7: 1 Depth: 2
- \(Z = (AD + AE + BD + BE + CD + CE)F + G \)
 - AND2: 7 OR6: 1 OR2: 1 Depth: 4
- \(Z = (AD + BD + CD + AE + BE + CE)F + G \)
 - AND2: 7 OR6: 1 OR2: 1 Depth: 4
- \(Z = [(A + B + C)D + (A + B + C)E]F + G \)
 - OR3: 2 AND2: 3 OR2: 2 Depth: 5
- \(Z = (A + B + C)(D + E)F + G \)
 - OR3: 1 OR2: 2 AND3: 1 Depth: 3

Using Multiplexors to Implement Functions
Cofactoring

• \(Z = ACE + A\neg C \neg D + \neg AB \neg E + \neg A \neg BD \)

 • Cofactor A

• \(Z = A(CE + \neg C \neg D) + \neg A(B \neg E + \neg BD) \)

 • Cofactor C in the left expression and B in the right expression

• \(Z = A(C(E) + \neg C(\neg D)) + \neg A(B(\neg E) + \neg B(D)) \)

Translating to Muxes

• \(A(C(E) + \neg C(\neg D)) + \neg A(B(\neg E) + \neg B(D)) \)

Thank You for Your Attention

• Start reading lab 4

• Start looking at homework 4

• Continue reading the book