Lecture 11:
Multi-Level Logic

CSE 370, Autumn 2007
Benjamin Ylvisaker

Where We Are

• Last lecture: Quine-McCluskey Minimization
• This lecture: Multi-Level Logic
• Next lecture: Circuit Delay and Timing
• Homework 4 in progress
• Lab 3 done; lab 4 next week

2-Level Minimum Circuits are Not Always the Best Solution

• Important circuit metrics:
 • Size
 • Speed
 • Complexity
 • Energy efficiency
• How we approximate these metrics:
 • Number and kind of gates
 • Number of gate inputs
 • Circuit depth
Example: Full Adder Sum Output

More Extreme Example: 2-Bit Adder

No Simple Methods

- For 2-level minimization we have:
 - K-maps
 - Quine-McCluskey
 - Espresso
- For multi-level minimization we have:
 - Lots of heuristics
 - SIS
Factoring

- \(Z = ADF + AEF + BDF + BEF + CDF + CEF + G \)
 - AND: 6 OR: 1 Depth: 2
- \(Z = (AD + AE + BD + BE + CD + CE) \cdot F + G \)
 - AND: 7 OR: 6 Depth: 4
- \(Z = (AD + BD + CD + AE + BE + CE) \cdot F + G \)
 - AND: 7 OR: 6 Depth: 4
- \(Z = [A \cdot B \cdot C] + (A + B + CE) \cdot F + G \)
 - OR: 2 AND: 3 OR: 2 Depth: 5
- \(Z = (A + B + C) \cdot D + (A + B + C) \cdot E \)
 - OR: 1 OR: 2 AND: 1 Depth: 3

Using Multiplexors to Implement Functions

Cofactoring

- \(Z = ACE + A \cdot \neg C \cdot \neg D + \neg AB \cdot \neg E + \neg A \cdot \neg BD \)
- Cofactor A
- \(Z = A(CE + \neg C \cdot \neg D) + \neg A(\neg B \cdot \neg E + \neg BD) \)
- Cofactor C in the left expression and B in the right expression
- \(Z = A(CE) + \neg (\neg C \cdot \neg D) + \neg A(B \cdot \neg E + \neg BD) \)
Translating to Muxes

- A((C(E) + ¬C(¬D)) + ¬A(B(¬E) + ¬B(¬D)))

Thank You for Your Attention

- Start reading lab 4
- Start looking at homework 4
- Continue reading the book