Lecture 2:
The Magical Base-2

CSE 370, Autumn 2007
Benjamin Ylvisaker

Daily Quiz

• Have you added yourself to the class mailing list?
• Do it by 5:30 this afternoon to get a 4 on today’s daily quiz
• Tell classmates who didn’t make it to class on time at your own discretion

Administrivia

• Office hours
 Monday Ramkumar ??? lab
 Tuesday Josh 1:30-2:30 lab
 Wednesday Benjamin 1:30-2:30 210
 Thursday Benjamin 9:30-10:30 210
 Friday Nikhil 11:30-12:30 lab

Elementary Math Review

• Positional number notation
 \[2,104 = 2 \times 10^3 + 1 \times 10^2 + 0 \times 10 + 4 \times 1 = 2 \times 10^3 + 1 \times 10^2 + 0 \times 10 + 4 \times 10^0 \]

• Generalize to arbitrary base \(b \)
 \[\text{XYZ} = X \times b^2 + Y \times b^1 + Z \times b^0 \]
 where \(X, Y \) and \(Z \) are digits with values in the range \([0..b-1] \)
Bases of Interest

- In 370, we are interested in the following bases:
 - Binary [0,1]
 - Octal [0..7]
 - Decimal [0..9]
 - Hexadecimal [0..9,A..F]
 - A=10, B=11, C=12, D=13, E=14, F=15

Conversion to Decimal

- \[1001101_2\]
 \[= 1 \times 2^6 + 0 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0\]
 \[= 64 + 0 + 0 + 8 + 4 + 1\]
 \[= 77\]

- \[92A70_{16}\]
 \[= 9 \times 16^4 + 2 \times 16^3 + 10 \times 16^2 + 7 \times 16^1 + 0 \times 16^0\]
 \[= 9 \times 65536 + 2 \times 4096 + 10 \times 256 + 7 \times 16 + 0 \times 1\]
 \[= 589824 + 8192 + 2560 + 112\]
 \[= 600688\]

Arithmetic is the Same in All Bases

- \[1101101_2\]
 \[32175_8\]
 \[= 27AA32_{16}\]
 \[+ 101011_2\]
 \[1622_8\]
 \[+ 92A70_{16}\]
 \[0000000_2\]
 \[34017_8\]
 \[30D4A2_{16}\]

- \[1001101_2\]
 \[32175_8\]
 \[= 27AA32_{16}\]
 \[- 101011_2\]
 \[1622_8\]
 \[- 92A70_{16}\]
 \[0000000_2\]
 \[30353_8\]
 \[1E7FC2_{16}\]

Multiplication, Too

- \[\begin{array}{c}
 1101101_2 \\
 \times 101011_2 \\
 \hline
 0000000_2 \\
 \hline
 \end{array}\]
 \[\begin{array}{c}
 1101101_2 \\
 \times 17_{16} \\
 \hline
 1101101_2 \\
 +A3_{16} \\
 \hline
 EA5_{16} \\
 \end{array}\]
Conversion to Binary by Successive Division

\[154_{10} \div 2_{10} = 77_{10} \quad \text{Remainder} 0 \]
\[77_{10} \div 2_{10} = 38_{10} \quad \text{Remainder} 1 \]
\[38_{10} \div 2_{10} = 19_{10} \quad \text{Remainder} 0 \]
\[19_{10} \div 2_{10} = 9_{10} \quad \text{Remainder} 1 \]
\[9_{10} \div 2_{10} = 4_{10} \quad \text{Remainder} 1 \]
\[4_{10} \div 2_{10} = 2_{10} \quad \text{Remainder} 0 \]
\[2_{10} \div 2_{10} = 1_{10} \quad \text{Remainder} 0 \]
\[1_{10} \div 2_{10} = 0_{10} \quad \text{Remainder} 1 \]

Read the result “up”

The Trouble with Negative Numbers

\[10011010_2 \div 1010_2 = 1111_2 \quad \text{Remainder} 100_2 \]
\[1111_2 \div 1010_2 = 1_2 \quad \text{Remainder} 101_2 \]
\[1_2 \div 1010_2 = 0_2 \quad \text{Remainder} 1_2 \]

• The symbol “-” for negative can be used in any base, when doing arithmetic by hand
• Computers only have two symbols: 1, 0. No “-”
• Also, computers usually do arithmetic with numbers that are a fixed number of bits “wide” (like, 8, 16, 32, 64)
Sign/Magnitude Representation

- High-order (left-most) bit is the sign. 0 = positive, 1 = negative
- Remaining bits are the magnitude
- With N bits, represent numbers between $-2^{N-1} + 1$ and $2^{N-1} - 1$
- Two representations of 0!

Two's Complement

- High-order (left-most) bit is the sign. 0 = positive, 1 = negative
- Remaining bits are the magnitude (encoded in a funny way)
- With N bits, represent numbers between $-2^{N-1} + 1$ and $2^{N-1} - 1$
- Just one representation of 0!

Sign/Magnitude

- Pro: easy to read and write for humans
- Con: harder to do basic arithmetic correctly with a computer
- Result: rarely used

Negation in 2’s Complement

- Flip the bits and add 1
Addition in 2’s Complement

- 0011 (3) + 0101 (5) = 1000 (-8)
- 0011 (3) + 1011 (-5) = 1110 (-2)

Subtraction is just addition with the second operand negated first.

Later in the Course

- Efficient circuits for implementing arithmetic
- Detecting overflow/underflow
- Changing the width of numbers without changing the number

Fractional Numbers

- We might want to represent non-integral numbers
- Two popular approaches:
 - Fixed-point
 - Floating-point
- Not covered in 370

Thank You for Your Attention

- Lab 1 has changed slightly, I’ll post an update soon (and send a mail to the class mailing list)
- Continue reading the book
- Continue/start homework 1
- Next time: the fundamentals of Boolean logic