
 1

CSE370 Final Exam (16 March 2005)

Please read through the entire examination first! This exam was designed to be
completed in 110 minutes (one hour and 50 minutes) and, hopefully, this estimate will be
reasonable.

There are 3 problems for a total of 100 points. The point value of each problem is
indicated in the table below. Each problem and sub-problem is on a separate sheet of
paper. Write your answer neatly in the space provided. If you need more space (you
shouldn't), you can write on the back of the sheet where the question is posed, but please
make sure that you indicate clearly the problem to which the comments apply. Do NOT
use any other paper to hand in your answers. If you have difficulty with part of a
problem, move on to the next one. They are mostly independent of each other.

The exam is CLOSED book and CLOSED notes. Please do not ask or provide anything
to anyone else in the class during the exam. Make sure to ask clarification questions
early so that both you and the others may benefit as much as possible from the answers.

Good luck and have a great break.

Name: J. Doe

ID#: 0537099

Problem Max Score Score

1 25 25
2 40 40
3 35 35

TOTAL 100 100

 2

1. Combinational Logic (25 points)

(a – 5 pts) Write the following function in canonical sum-of-products form. Feel free to
choose to write terms either with four variables each (e.g., A’B’CD) or in minterm
notation (e.g., m3).

Z = (AC’) (B xor D)’ + (A’C) (B’D’)’

Z = AC’(BD + B’D’) + (A’C) (B + D)
Z = ABC’D + AB’C’D’ + A’BC + A’CD

Z = ABC’D + AB’C’D’ + A’BCD + A’BCD’ + A’B’CD
Z = m13 + m8 + m7 + m6 + m3
Z = m3 + m6 + m7 + m8 + m13

(b – 5pts) Minimize the function via the K-map method with the addition of don’t cares
for AB’D and A’B’D’.

Don’t cares = d0 + d2 + d9 + d11

Z = A’C + AC’D + AB’C’
or

Z = A’C + AC’D + B’C’D’

 3

 (c – 5pts) List all the prime implicants for the function of part (b). Which are essential
prime implicants?

There are 5 prime implicants: A’C, AC’D, AB’C’, B’C’D’, B’CD

Two of these are essential to any cover: A’C, AC’D

(d – 10pts) Implement your result for part (b) using an 8:1 multiplexer (provided below)
and at MOST one inverter. S2 is the most significant bit of the control signals, S0 is the
least significant, therefore, S2=1, S1=1, S0=0 selects input #6.

Using Z = A’C + AC’D + AB’C’, we can rewrite Z to match the multiplexer equation,
Z = A’B’C’(I0) + A’B’C(I1) + A’BC’(I2) + A’BC(I3)
 + AB’C’(I4) + AB’C(I5) + ABC’(I6) + ABC(I7)

Z = A’B’C’(0) + A’B’C(1) + A’BC’(0) + A’BC(1)
 + AB’C’(1+ D) + AB’C(0) + ABC’(D) + ABC(0)

Z = A’B’C’(0) + A’B’C(1) + A’BC’(0) + A’BC(1)
 + AB’C’(1) + AB’C(0) + ABC’(D) + ABC(0)

 4

 2. Finite State Machines (40 points)

The following Verilog was found among old papers in a dusty drawer of a now defunct
dot-com company. Unfortunately, there were no comments in the code.

module StuffFrame(Enable, Ready, DataIn, DataOut, Sending, Clk, Reset);
 input Enable, DataIn, Clk, Reset;
 output Ready, DataOut, Sending;

 reg [6:0] state;
 reg [6:0] next_state;

 parameter START = 7'b0000000;
 parameter BEGIN1 = 7'b1100001;
 parameter BEGIN2 = 7'b1100010;
 parameter BEGIN3 = 7'b1100011;
 parameter BEGIN4 = 7'b1010100;
 parameter SEND0 = 7'b1010101;
 parameter SEND1 = 7'b1110110;
 parameter STUFF = 7'b1100111;
 parameter END1 = 7'b1101000;
 parameter END2 = 7'b1101001;
 parameter END3 = 7'b1101010;
 parameter END4 = 7'b1001011;

 always @(posedge Clk) begin
 if (Reset) begin state = START; end
 else begin state = next_state; end
 end

 always @(Enable or DataIn or state) begin
 case(state)
 START: if (Enable) next_state = BEGIN1; else next_state = START;
 BEGIN1: next_state = BEGIN2;
 BEGIN2: next_state = BEGIN3;
 BEGIN3: next_state = BEGIN4;
 BEGIN4: if (DataIn) next_state = SEND1; else next_state = SEND0;
 SEND0: if (~Enable) next_state = END1;

else if (DataIn) next_state = SEND1; else next_state = SEND0;
 SEND1: if (~Enable) next_state = END1;
 else if (DataIn) next_state = STUFF; else next_state = SEND0;
 STUFF: next_state = SEND0;
 END1: next_state = END2;
 END2: next_state = END3;
 END3: next_state = END4;
 END4: next_state = START;
 endcase
 end

 assign Sending = state[6];
 assign DataOut = state[5];
 assign Ready = state[4];

endmodule

 5

(a – 10pts) What type of state machine is being described (Mealy, Moore, synchronous
Mealy)? How many states does it have? Derive its state diagram and clearly label all
transitions and the values for the 3 outputs in each state.

This is a Moore machine as the outputs depend only on the current value of the state bits
as evidenced by the three assign statements at the bottom of the module.

There are 12 states as evidenced by the 12 parameter statements defining their binary
codes and the 12-way case statement in the body of the always block triggered by
changes in the inputs or state bits.

 6

(b – 15pts) Simulate the state machine for the following sample input waveforms. Fill in
the details for the signals Ready, Sending, and DataOut. Also, please indicate the state
the FSM is in for each clock cycle. Assume that the FSM is initially in state “START”.

 7

(c – 15pts) We are now faced with the problem of implementing this circuit (the state
diagram of part (a)) and our company has a special deal on 4-bit counters and we have to
use one in our realization. We’ll represent the last four bits of the state variable of our
FSM using a counter – note that this state assignment (using only those 4 bits) is enough
to uniquely identify each state. Verilog code describing the internals of the counter is
shown below. Your job is to use its “clear”, “enable”, and “load” signals to control the
counter’s sequence so that it matches the state diagram’s transitions. Don’t worry about
the outputs of the FSM, they will just be functions of the state bits realized by the
counter.

module counter(clk, clear, enable, load, datain, value);
 input clk, clear, enable, load;
 input [3:0] datain;
 output [3:0] value;
 reg [3:0] value;
 always @(posedge clk) begin
 if (clear) value = 0;
 else if (load) value = datain;
 else if (enable) value = value + 1;
 end
endmodule

 8

Complete the following state table for the finite state machine. Make sure to use don’t
cares as much as possible. The first couple of rows are already filled in as an example.

Inputs Outputs
StuffFrame Inputs Counter Value Counter Controls

Reset Enable DataIn state[3:0] next_state[3:0] clear enable load datain[3:0]
1 X X XXXX 0000 1 X X XXXX

0 0 X 0000 0000 1 X X XXXX

0 1 X 0000 0001 0 1 0 XXXX

0 X X 0001 0010 0 1 0 XXXX

0 X X 0010 0011 0 1 0 XXXX

0 X X 0011 0100 0 1 0 XXXX

0 X 0 0100 0101 0 1 0 XXXX

0 X 1 0100 0110 0 X 1 0110

0 0 X 0101 1000 0 X 1 1000

0 1 0 0101 0101 0 0 0 XXXX

0 1 1 0101 0110 0 1 0 XXXX

0 0 X 0110 1000 0 X 1 1000

0 1 0 0110 0101 0 X 1 0101

0 1 1 0110 0111 0 1 0 XXXX

0 X X 0111 0101 0 X 1 0101

0 X X 1000 1001 0 1 0 XXXX

0 X X 1001 1010 0 1 0 XXXX

0 X X 1010 1011 0 1 0 XXXX

0 X X 1011 0000 1 X X XXXX

 9

3. Computer Organization (35 points)

Below is the architecture diagram for the processor of Assignment #9 and #10.

ALUout(31:0)

PC(31:0)

neg

RegA(31:0) zero

op(5:0)

srcA

RegB(31:0)
Inst(31:0)

srcB(1:0)

ALU

ALUout(31:0)

PC(31:0)Inst(31:0)

PCld

PCsel

reset

clk

PC

ALUout(31:0)

RegA(31:0)

Inst(31:0)

RegB(31:0)

MBR(31:0)

regW rite
wrDataSel

wrRegSel

clk

RegFile

Inst(31:0) ALUmaEN

IRld

neg

MBRld

reset

PCld

zero PCmaEN

PCsel

RegBmdEN

mr

mw

op(5:0)

regWrite

srcA

srcB(1:0)

wrDataSel

wrRegSelclk

Controller

address(31:0)

data(31:0)read

write

Memory

D(31:0)

Q(31:0) LD

clkD(31:0)

Q(31:0)LD

clk

D(31:0)

Q(31:0)LD

clk

clk

clk

clk

mr
mw

clk

op(5:0)

op(5:0)

zero

neg

MBRld IRld

PCld
PCsel

regWrite
wrDataSel

wrRegSel srcA

srcB(1:0)

RegBmdEN ALUmaENPCmaEN

ALUmaEN
IRld
MBRld

PCld
PCmaEN
PCsel
RegBmdEN
mr
mw

regWrite
srcA
srcB(1:0)
wrDataSel
wrRegSel

VCC

clk

reset

reset

memory_data_bus(31:0)

memory_address_bus(31:0)

Consider adding a new instruction to those that you implemented: SWI – “store word to
immediate”. SWI has a 6-bit op-code followed by a register specification (5-bits) and 21
bits that are to be used as the index into memory. The operation is:

Memory[21-bit offset] ← RegFile[rs]

 10

(a – 10pts) What changes need to be made to the data-path to realize this instruction?
Consider changes to RegFile and ALU or even adding additional paths, if needed. You
can also feel free to add additional control signals, if needed. Make any changes to the
diagram below (just a large version of the diagram on the previous page) with clear
annotations. Recall that register “rs” is read into RegA every clock cycle and that the
multiplexer on the B input of the ALU can choose between a sign-extended 16-bit offset,
0, 1, or RegB controlled by srcB[1:0].

Add a new tristate driver (controlled by RegAmdEN) to get the output of RegA, where the
contents of rs will be delivered, to the memory data bus. Enable the B-side multiplexer
on the ALU to extract the 21-bit memory address from the instruction register and pad
the upper 11 bits with zeros.

 11

(b – 10pts) Given the changes you specified in part a.1 and ignoring instruction fetch and
instruction decode cycles, how many additional cycles do you need to execute this
instruction? Specify the value of the control signals for each of these cycles in the table
below (including any control signals you may have added or modified). Make sure to
specify any don’t cares. Using symbolic signal names is fine (as shown in the one entry
below).

Control Signal Value in 1st
Execute Cycle

Value in 2nd
Execute Cycle
(if needed)

Value in 3rd
Execute Cycle
(if needed)

IRld 0 0
MBRld X X
PCld 0 0
PCsel X X
mr 0 0
mw 0 1
PCmaEN 0 0
ALUmaEN 0 1
RegBmdEN 0 0
srcA X X
srcB[1:0]
Op[5:0] “pass B” X
regWrite 0 0
wrDataSel X X
wrRegSel X X
RegAmdEN 0 1
srcB[2:0] “padded 21-bit

offset”
X

 12

(c – 15pts) Consider adding two flip-flops on the “zero” and “neg” signals between the
ALU and the controller. How would this affect the processor? Consider the controller
size (number of states), performance (minimum clock period), and any changes that may
be required of the data-path. Which of the instructions: ADD, SUB, AND, OR, SLT, LW,
SW, ADDI, BEQ, J, HALT would be affected by this change?

Adding a flip-flop to each of the “zero” and “neg” lines delays when the values of those
signals get to the Controller. This will make certain instructions (SLT and BEQ) that
require the result of an ALU operation to wait an extra cycle. No changes are needed in
the data-path.

However, since the ALU and Controller delays are no longer in the same cycle, we may
be able to run the processor clock with a shorter period and execute more instructions in
the same amount of time.

