Overview

& Last lecture
= State encoding
& One-hot encoding
¥ Output encoding

& Today:
= Optimizing FSMs
¥ Pipelining
¥ Retiming
¥ Partitioning
= Conclusion of sequential logic

CSE370, Lecture 25

Definitions

& Latency: Time to perform a computation
= Data input to data output

& Throughput: Input or output data rate
= Typically the clock rate

Combinational delays drive performance
= Define d = delay through slowest combinational stage
n = number of stages from input to output
= Latency «<n xd (in sec)
= Throughput < 1/d (in Hz)

CSE370, Lecture 25 2

Pipelining

& What?
= Subdivide combinational logic
= Add registers between logic

+ Why?
= Trade latency for throughput
= Increased throughput
¥ Reduce logic delays
¥ Increase clock speed
= Increased latency
& Takes cycles to fill the pipe
= Increase circuit utilization
¥ Simultaneous computations

CSE370, Lecture 25

Logic Reg

Loiic Rei Loiic &i

w

Reg Logic Reg

Pipelining

& When?
= Need throughput more than latency
¥ Signal processing
= Logic delays > setup/hold times

= Acyclic logic
& Where?
= At natural breaks in the
combinational logic l
4

= Adding registers makes sense

CSE370, Lecture 25

Pipelining example

° (b) Pipelined version

Datapath for the computation of log(la + bl)

CSE370, Lecture 25

Pipelining and clock skew

& Which is faster?
& Which is safer?

CSE370, Lecture 25 o

Retiming

Pipelining adds registers
= To increase the clock speed

Retiming moves registers around
= Reschedules computations to optimize performance
& Minimize critical path
& Optimize logic across register boundaries
¥ Reduce register count
= Without altering functionality

CSE370, Lecture 25 7

Retiming in a nutshell

& Change position of FFs

= For speed . (]
= To suit implementation target
& Retiming modifies state) o]

assignment

= Preserves FSM functionality X/ \
B
u .
(o]
B

CSE370, Lecture 25 8

Retiming groundrules

& Rules:
= Remove one register from each input and add
one to each output
= Remove one register from each output and add
one to each input

N

‘ Combinational logic
. Register

CSE370, Lecture 25 9

Retiming examples

& Reduce register count
P
beEDX = 3 IDLde>

& Change output delays

CSE370, Lecture 25 10

Optimal pipelining

= Add registers
m Use retiming to optimize location

Output

Added registers
for pipelining

Input Output

CSE370, Lecture 25 11

Example: Digital correlator

@ Y = 8(Xy Ag) + 8(Xey, A1) + 8(Xe o @) + (X3, 83)
= §(x, a) = 1if x = a; 0 otherwise

@
Xt

Eh) a a, as

CSE370, Lecture 25 12

Example: Digital correlator (cont'd)

& Delays: Comparator = 3; adder = 7

Original design
cycle time = 24

Retimed design
cycle time = 13

CSE370, Lecture 25

FSM partitioning

& Break a large FSM into two or more smaller FSMs

Rationale
= Less states in each partition
« Simpler minimization and state assignment
& Smaller combinational logic
¢ Shorter critical path
= But more logic overall

& Goal
= Minimize communication between partitions
« Minimize wires & I/0

& Partitions are synchronous
= Same clock!!!

CSE370, Lecture 25 14

Example: Partition the machine

4 Partition into two halves

CSE370, Lecture 25

Introduce idle states

4 SA and SB handoff control between machines

: Q
D o(Clest+
Does2+ @ CeS24,(ce__,

I C4eS3+ C4eS3
i Cses2y \
C5e52 @

CSE370, Lecture 25 : 16

Partitioning rules

Rule #1: Source-state transformation
Replace by transition to idle state (SA)

O @ O

Rule #2: Destination state transformation
Replace with exit transition from idle state

. c2 . - . C20S6 Q

CSE370, Lecture 25

Partitioning rules (con't)

Rule #3: Multiple transitions with same source or destination
Source = Replace by transitions to idle state (SA)
Destination = Replace with exit transitions from idle state

Cy Ol 82:2“
&) (ee]
@ c @ ca 5

Rule #4: Hold condition for idle state
OR exit conditions and invert

C2-S6
(s)=—2% (s

CSE370, Lecture 25 18

Mealy versus Moore partitions

& Mealy machines undesirable
= Inputs can affect outputs immediately
& “output” can be a handoff to another machine!!!
= Inputs can ripple through several machines in one clock cycle

& Moore or synchronized Mealy desirable
= Input-to-output path always broken by a flip-flop
= But...may take several clocks for input to propagate to output
& Output may derive from other side of a partition

CSE370, Lecture 25 19

Example: Six-state up/down counter

& Break into 2 parts

U = count up
D = count down

CSE370, Lecture 25 20

Example: 6 state up/down counter (con't)

& Count sequence Sy, Sy, S,, S3, S4/ Ss
= S, goes to S, and holds, leaves after Sg
= S; goes to Sg and holds, leaves after S,
= Down sequence is similar

U
(DeS3 + (DeS0+
UeS5)’ UeS2) C

UsS:

CSE370, Lecture 25 21

Minimize communication between partitions

& Ideal world: Two machines handoff control
= Separate I/O, states, etc.

4 Real world: Minimize handoffs and common 1/0
= Minimize number of state bits that cross boundary
= Merge common outputs

& Look for:
= Disjoint inputs used in different regions of state diagram
= Outputs active in only one region of state diagram
= Isomorphic portions of state diagram
K Add states, if necessary, to make them so
= Regions of diagram with a single entry and single exit point

CSE370, Lecture 25 2

Sequential logic: What you should know

& Sequential logic building blocks

Latches (R-S and D)

Flip-flops (master/slave D, edge-triggered D & T)
Latch and flip-flop timing (setup/hold time, prop delay)
Timing diagrams

Flip-flop clocking

Asynchronous inputs and metastability

Registers

CSE370, Lecture 25 23

Sequential logic: What you should know

& Counters
= Timing diagrams
= Shift registers
= Ripple counters
= State diagrams and state-transition tables
= Counter design procedure
1. Draw a state diagram
2. Draw a state-transition table
3. Encode the next-state functions
4, Implement the design
= Self-starting counters

CSE370, Lecture 25 24

Sequential logic: What you should know

Finite state machines

= Timing diagrams (synchronous FSMs)

= Moore versus Mealy versus registered Mealy

= FSM design procedure
1. Understand the problem (state diagram & state-transition table)
2. Determine the machine’s states (minimize the state diagram)
3. Encode the machine’s states (state assignment)
4, Design the next-state logic (minimize the combinational logic)
5. Implement the FSM

= FSM design guidelines
¥ Separate datapath and control

= One-hot encoding

= Pipelining and retiming basics

CSE370, Lecture 25 25

