Computer organization

= Computer design — an application of digital logic design procedures
= Computer = processing unit + memory system
= Processing unit = control + datapath
= Control = finite state machine
o inputs = machine instruction, datapath conditions
o outputs = register transfer control signals, ALU operation codes
o instruction interpretation = instruction fetch, decode, execute
= Datapath = functional units + registers
o functional units = ALU, multipliers, dividers, etc.
o registers = program counter, shifters, storage registers

CSE370 - Computer Organization 1

Structure of a computer

= Block diagram view

/ Processor

vy
[daaN_/

central processing
unit (CPU)

control signals
data condition:
instruction unit execution unit

— instruction fetch and - functional units
interpretation FSM and registers

CSE370 - Computer Organization

Registers

= Selectively loaded — EN or LD input
= Output enable — OE input
= Multiple registers — group 4 or 8 in parallel

——|LD

__Ip7 OE asserted causes FF state to be
— D6 connected to output pins; otherwise they
— 3‘5; are left unconnected (high impedance)
— %g LD asserted during a lo-to-hi clock
— b1 transition loads new data into FFs
—P0 ak

CSE370 - Computer Organization 3

Register transfer

o dedicated wires

Pointo-ooint i == = =
= Point-to-point connection FXM%J% HWI%%T ’JMTJ% 4

o muxes on inputs of
each register

I
t

@

Register files

= Collections of registers in one package
o two-dimensional array of FFs
o address used as index to a particular word
o can have separate read and write addresses so can do both at same time
= 4 by 4 register file
a 16 D-FFs
o organized as four words of four bits each
o write-enable (load)
o read-enable (output enable)

CSE370 - Computer Organization 5

= Common input from multiplexer T T T 1
o load enables [] [t] [d] [rRa]
for each register l l l 1
o control signals I MUX]
for multiplexer
= Common bus with output enables T T T 1
o output enables and load [] [t] [rd] [Ra]
enables for each register T T T T
BUS
CSE370 - Computer Organization 4
Memories

= Larger collections of storage elements
o implemented not as FFs but as much more efficient latches
o high-density memories use 1 to 5 switches (transitors) per memory bit
= Static RAM — 1024 words each 4 bits wide
o once written, memory holds forever (not true for denser dynamic RAM)
o address lines to select word (10 lines for 1024 words)
o read enable
= same as output enable
= often called chip select

= permits connection of many
chips into larger array

write enable (same as load enable)
bi-directional data lines
= output when reading, input when writing

o

o

CSE370 - Computer Organization

6

Instruction sequencing

= Example — an instruction to
add the contents of two registers (Rx and Ry)
and place result in a third register (Rz)
= Step 1: get the ADD instruction from memory into an instruction register
= Step 2: decode instruction
a instruction in IR has the code of an ADD instruction
o register indices used to generate output enables for registers Rx and Ry
o register index used to generate load signal for register Rz
= Step 3: execute instruction
o enable Rx and Ry output and direct to ALU
o setup ALU to perform ADD operation
a direct result to Rz so that it can be loaded into register

CSE370 - Computer Organization

Instruction types

= Data manipulation
o add, subtract
o increment, decrement
o multiply
a shift, rotate
o immediate operands
= Data staging
o load/store data to/from memory
o register-to-register move
= Control
o conditional/unconditional branches in program flow
o subroutine call and return

CSE3T0 - Computer Organization 8

Elements of the control unit (aka instruction unit)

= Standard FSM elements

o state register

o next-state logic

o output logic (datapath/control signalling)

o Moore or synchronous Mealy machine to avoid loops unbroken by FF
= Plus additional "control" registers

o instruction register (IR)

a program counter (PC)
= Inputs/outputs

o outputs control elements of data path

o inputs from data path used to alter flow of program (test if zero)

CSE370 - Computer Organization 9

Instruction execution

= Control state diagram (for each diagram) Reset
o reset
o fetch instruction
o decode
o execute

= Instructions partitioned into three classes
a branch
a load/store
a register-to-register

= Different sequence through
diagram for each

instruction type Branch Bran:
Taken Not TaKe

Initialize
lachine

=

Register-
to-Register

CSE370 - Computer Organization 10

Data path (hierarchy)

= Arithmetic circuits constructed G
in hierarchical and modular fashion)
o each bit in datapath Bill'r: FA Sum
is functionally identical
o 4-bit, 8-bit, 16-bit, 32-bit datapaths Cout

;@mD Cout
P>

[

CSE370 - Computer Organization 1

Data path (ALU)

= ALU block diagram
o input: data and operation to perform
o output: result of operation and status information

Operation

CSE3T0 - Computer Organization 12

Data path (ALU + registers)

= Accumulator
a special register
a one of the inputs to ALU
a output of ALU stored back in accumulator
= One-address instructions
o operation and address of one operand T 16

other operand and destination
is accumulator register

a AC <— AC op Mem[addr]
"single address instructions”
(AC implicit operand)

= Multiple registers

o part of instruction used
to choose register operands

o

o

CSE3T0 - Computer Organization 13

‘ Data path (bit-slice)

= Bit-slice concept — replicate to build n-bit wide datapaths

from from
“—memory [*—memory

1 bit wide 2 bits wide

CSE370 - Computer Organization 14

Instruction path

= Program counter (PC)
o keeps track of program execution
o address of next instruction to read from memory
o may have auto-increment feature or use ALU
= Instruction register (IR)
a current instruction
o includes ALU operation and address of operand
o also holds target of jump instruction
o immediate operands
= Relationship to data path
a PC may be incremented through ALU
a contents of IR may also be required as input to ALU — immediate operands

CSE370 - Computer Organization 15

Data path (memory interface)

= Memory
o separate data and instruction memory (Harvard architecture)
= two address busses, two data busses
a single combined memory (Princeton architecture)
= single address bus, single data bus
= Separate memory
o ALU output goes to data memory input
a register input from data memory output
o data memory address from instruction register
o instruction register from instruction memory output
o instruction memory address from program counter
= Single memory
a address from PC or IR
o memory output to instruction and data registers
a memory input from ALU output

CSE370 - Computer Organization 16

Block diagram of processor (Harvard)

= Register transfer view of Harvard architecture

o which register outputs are connected to which register inputs
o arrows represent data-flow, other are control signals from control FSM
o two MARs (PC and IR) load
o two MBRs (REG and IR 16 path
o load comro<| for each reg)is1er /t l l
6 t >
* e Data Memor
P 16-bit word
N i addr
z
Control
o i
Inst Memory|
(8-bit words,
addr
16

CSE370 - Computer Organization 17

Block diagram of processor (Princeton)

= Register transfer view of Princeton architecture

which register outputs are connected to which register inputs
arrows represent data-flow, other are control signals from control FSM
MAR may be a simple multiplexer rather than separate register
MBR is split in two (REG and IR) load

o

o

o

o

) 16 — path
o load control for each register v l l
ore Td wr
Data Memory
16-bit words]
addr
Control MAR
FSM

CSE370 - Computer Organizatic

A simplified processor data-path and memory

Princeton architecture
Register file
Instruction register
PC incremented
through ALU
Modeled after
MIPS rt000
(used in 378
textbook by
Patterson &
Hennessy)
o really a 32-bit
machine
o we'lldo a 16-bit
version

Bl e 318

1
seisive | rosgegial

TR [wsReaeT
webabate]

CSE370 - Computer Organization

Processor control

= Synchronous Mealy or Moore machine
= Multiple cycles per instruction

Controller EegEmdER
ALUmaER
1- resen Flma
I Tesen o
Ll T
P14
Frrel
wrBregiel
wrDatadzl
regirite
IR14
MER14

neg — neg

mero — zera

Tnst et Inst
R

srcEL
srcBi
srch

| EeEmam
|— ALimaEn
[Etmain
— e
—
[Fr1a
[Frse1
[wzBegel
[weDatasel
[redirice
|— 1814
|— MER1a

B
|3 zeEL
[szcE0

— szca

™

CSE370 - Computer Organization

2

‘ Processor instructions

= Three principal types (16
type op

bits in each instruction)

S rt rd funct
er) [3] [3] [4]
I(mmediate) | 3| 3 17 |
[J{ump) 3 [13]
Some of the instructions
add 0 SR Td 0 Td=rs+n
R | sub 0 rs rt rd 1 rd=rs-rt
and 0 rs rt rd 2 rd=rs&rt
or 0 rs rt rd 3 rd=rs|rt
slt 0 rs rt rd 4 rd=(rs<r)
Iw 1 s rt offset rt = mem(rs + offset]
1 sw 2 rs rt offset mem[rs + offset] = rt
beq 3 rs rt offset pc = pc + offset, if (rs ==)
addi 4 rs rt offset rt=rs + offset
3 [5 target address PpC = target address
halt 7 - stop execution until reset

CSE3T0 - Computer Organization

Tracing an instruction's execution

= Instruction:

B=rl+r2

R [0 [rs=rl [rt=r2 [rd=r3

[funct=0]

. instruction fetch

move instruction address from PC to memory address bus

assert memory read

move data from memory data bus into IR
configure ALU to add 1 to PC

configure PC to store new value from ALUout

. instruction decode

op-code bits of IR are input to control FSM

rest of IR bits encode the operand addresses (rs and rt)

= these go to register file

CSE3T0 - Computer Organization

Tracing an instruction's execution (cont’d)

Instruction: r3=r1 +r2
R [0 [rs=r1 | n=r2 [rd=r3 [funct=0 |
3. instruction execute

o

set up ALU inputs

o

o

configure ALU to perform ADD operation
configure register file to store ALU result (rd)

CSE370 - Computer Organization

Tracing an instruction's execution (cont’d)

wrDatadsl
segirite wosFegiel

Teginies [waegiel
atasel

tnse .

At Reg

W File MF

— 1

|

Tracing an instruction's execution (cont’d)

PUsel zeset FOLd

= Step2

— et

Feeel zmewe 14

PC FC

e, Reg

R File ™

25
. to controller

Tracing an instruction's execution (cont’d)

PUsel zeset FOLd

= Step3

— et

Feeel zmewe 14

PC FC

2

Register-transfer-level description

= Control
o transfer data between registers by asserting appropriate control signals

= Register transfer notation - work from register to register
o instruction fetch:
mabus < PC; —move PC to memory address bus (PCmaEN, ALUmaEN)
memory read; — assert memory read signal (mr, RegBmdEN)
IR <~ memory; —load IR from memory data bus (IRId)
op « add —send PC into A input, 1 into B input, add
(srcA, srcBO, scrB1, op)
PC « ALUout - load result of incrementing in ALU into PC (PCld, PCsel)
o instruction decode:
IR to controller
values of A and B read from register file (rs, rt)
o instruction execution:
op « add —send regA into A input, regB into B input, add
(srcA, srcBO, scrB1, op)
rd < ALUout - store result of add into destination register
(regWrite, wrDataSel, wrRegSel)

CSE3T0 - Computer Organization

Register-transfer-level description (cont’d)

= How many states are needed to accomplish these transfers?
o data dependencies (where do values that are needed come from?)
o resource conflicts (ALU, busses, etc.)
= Inour case, it takes three cycles
o one for each step
o all operation within a cycle occur between rising edges of the clock
= How do we set all of the control signals to be output by the state machine?
o depends on the type of machine (Mealy, Moore, synchronous Mealy)

CSE370 - Computer Organization 28

Review of FSM timing

fetch decode execute

1 I step 1 i step 2 i step 3 i l

T IIRFmem[PC];I Acrs I rdeA+B I I
PCPC+1; | Bert

to configure the data-path to do this here,
when do we set the control signals?

CSE370 - Computer Organization

FSM controller for CPU (skeletal Moore FSM)

= First pass at deriving the state diagram (Moore machine)
o these will be further refined into sub-states

reset

instruction
fetch
instruction
decode

instruction
execution

CSE370 - Computer Organization 30

FSM controller for CPU (reset and inst. fetch)

= Assume Moore machine

o outputs associated with states rather than arcs
= Reset state and instruction fetch sequence
= On reset (go to Fetch state)

o start fetching instructions

o PC will set itself to zero

reset
mabus « PC; instruction
memory read; fetch
IR < memory data bus;
PC«PC+1;

CSE3T0 - Computer Organization 3

FSM controller for CPU (decode)

= Operation decode state
o next state branch based on operation code in instruction
o read two operands out of register file
= what if the instruction doesn’t have two operands?

% instruction
branch based on value of decode
Inst[15:13] and Inst[3:0]

O&0O00

CSE3T0 - Computer Organization 32

FSM controller for CPU (instruction execution)

= For add instruction
o configure ALU and store result in register

rd«—A+B

o other instructions may require multiple cycles

instruction
execution

CSE370 - Computer Organization 3

FSM controller for CPU (add instruction)

= Putting it all together
and closing the loop
o the famous reset

instruction
instruction
fetch trudi
decode
execute
cycle
% instruction
~_ decode
instruction
execution
CSE370 - Computer Organization 34

FSM controller for CPU

= Now we need to repeat this for all the instructions of our
processor
o fetch and decode states stay the same
o different execution states for each instruction

= some may require multiple states if available register transfer paths
require sequencing of steps

CSE3T0 - Computer Organization 3

87 s4 2 0
--ﬂ mm RD = RA op RB ALU instruction

This design needs to be run with a clock period of 20ns.
To single-step, set the simulation step to 20ns.

us u3

pogo) [] nsiis)

iram
file = iramo0.dat"

ClockGen
period = 10
number = 1000000 2 ut
number = nsi4) o AUAIS0) AU50)
period =20 inst(10) o AuB150) ' =
inst(13:11) .
A0 o e
LN 1u16
ALU opeodes
»{reset su
regfiledx1s Prasaza
XOR=1
XNOR=5

CSE3T0 - Computer Organization 36

