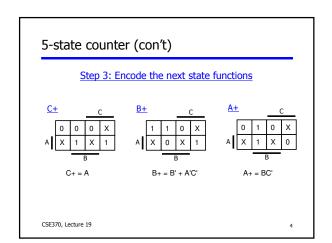
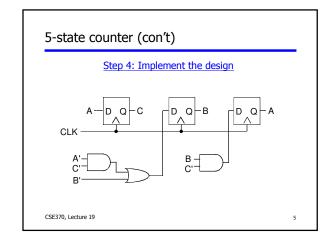
Overview

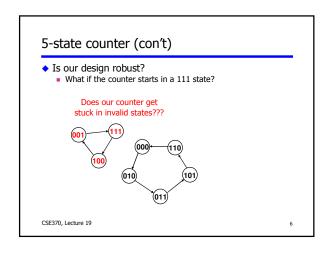
- Last lecture
 - Introduction to finite state machines
 - ✓ State diagrams
 - Counters as finite state machines **∠** Counter design
- Today
 - Finish counter design
 - ✓ Our last design example
 ✓ Self-starting counters

CSE370, Lecture 19

CSE370, Lecture 19


Review: Counter design procedure


- 1. Draw a state diagram
- 2. Draw a state-transition table
- 3. Encode the next-state functions
 - Minimize the logic using k-maps
- 4. Implement the design


Example: A 5-state counter

CSE370, Lecture 19

Example: A 5-state counter ◆ Counter repeats 5 states in sequence Sequence is 000, 010, 011, 101, 110, 000 (not binary) Step 1: State diagram Step 2: State transition table Assume D flip-flops Present State Next State C+ B+ A+ 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 0 0 -1 0 -

♦ Back-annotate our design to check it

0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 0 1 1 0

Fill in state transition table

Draw state diagram (101) A+ = BC' B+ = B' + A'C'

The proper methodology is to *design* your counter to be self-starting

CSE370, Lecture 19

Self-starting counters

- ◆ Invalid states should always transition to valid states
 - Assures startup
 - Assures bit-error tolerance
- Design your counters to be self-starting

 - Draw all states in the state diagram
 Fill in the entire state-transition table
 May limit your ability to exploit don't cares

 ✓ Choose startup transitions that minimize the logic

CSE370, Lecture 19

Next subject: Finite-state machines

- ◆ Generalize the counter-design methodology
 - State machines have input signals
 - State machines have complex transitions
- ◆ Finite-state machines control digital systems
 - The core of digital design

CSE370, Lecture 19