
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 26: Computer Organization

Last Lecture
Computer Organization

Today
More Computer Organization

Administrivia

A simplified processor data-
path and memory

Princeton architecture
Register file
Instruction register
PC incremented
through ALU
Modeled after
MIPS rt000
(used in 378
textbook by
Patterson &
Hennessy)

really a 32-bit
machine
we’ll do a 16-bit
version

Processor control
Synchronous Mealy or Moore machine
Multiple cycles per instruction

Processor instructions
Three principal types (16 bits in each instruction)

type op rs rt rd funct
R(egister) 3 3 3 3 4
I(mmediate) 3 3 3 7
J(ump) 3 13

Some of the instructions

add 0 rs rt rd 0 rd = rs + rt
sub 0 rs rt rd 1 rd = rs - rt
and 0 rs rt rd 2 rd = rs & rt
or 0 rs rt rd 3 rd = rs | rt
slt 0 rs rt rd 4 rd = (rs < rt)
lw 1 rs rt offset rt = mem[rs + offset]
sw 2 rs rt offset mem[rs + offset] = rt
beq 3 rs rt offset pc = pc + offset, if (rs == rt)
addi 4 rs rt offset rt = rs + offset
j 5 target address pc = target address
halt 7 - stop execution until reset

R

I

J

Tracing an instruction's
execution

Instruction: r3 = r1 + r2
R 0 rs=r1 rt=r2 rd=r3 funct=0

1. instruction fetch
move instruction address from PC to memory address bus
assert memory read
move data from memory data bus into IR
configure ALU to add 1 to PC
configure PC to store new value from ALUout

2. instruction decode
op-code bits of IR are input to control FSM
rest of IR bits encode the operand addresses (rs and rt)

these go to register file

Tracing an instruction's
execution (cont’d)

Instruction: r3 = r1 + r2
R 0 rs=r1 rt=r2 rd=r3 funct=0

3. instruction execute
set up ALU inputs
configure ALU to perform ADD operation
configure register file to store ALU result (rd)

Tracing an instruction's
execution (cont’d)

Step 1

Tracing an instruction's
execution (cont’d)

Step 2

to controller

Tracing an instruction's
execution (cont’d)

Step 3

Register-transfer-level
description

Control
transfer data between registers by asserting appropriate control signals

Register transfer notation - work from register to register
instruction fetch:

mabus ← PC; – move PC to memory address bus (PCmaEN,
ALUmaEN)

memory read; – assert memory read signal (mr, RegBmdEN)
IR ← memory; – load IR from memory data bus (IRld)
op ← add – send PC into A input, 1 into B input, add

(srcA, srcB0, scrB1, op)
PC ← ALUout – load result of incrementing in ALU into PC (PCld,

PCsel)
instruction decode:

IR to controller
values of A and B read from register file (rs, rt)

instruction execution:
op ← add – send regA into A input, regB into B input, add

(srcA, srcB0, scrB1, op)
rd ← ALUout– store result of add into destination register

(regWrite, wrDataSel, wrRegSel)

Register-transfer-level
description (cont’d)

How many states are needed to accomplish these
transfers?

data dependencies (where do values that are needed
come from?)
resource conflicts (ALU, busses, etc.)

In our case, it takes three cycles
one for each step
all operation within a cycle occur between rising
edges of the clock

How do we set all of the control signals to be output by
the state machine?

depends on the type of machine (Mealy, Moore,
synchronous Mealy)

Review of FSM timing

step 1 step 2 step 3

fetch decode execute

IR ← mem[PC];
PC ← PC + 1;

rd ← A + BA ← rs
B ← rt

to configure the data-path to do this here,
when do we set the control signals?

instruction
execution

instruction
decode

LW
SW ADD J

reset

FSM controller for CPU
(skeletal Moore FSM)

First pass at deriving the state diagram (Moore machine)
these will be further refined into sub-states

instruction
fetch

FSM controller for CPU (reset
and inst. fetch)

Assume Moore machine
outputs associated with states rather than arcs

Reset state and instruction fetch sequence
On reset (go to Fetch state)

start fetching instructions
PC will set itself to zero

mabus ← PC;
memory read;
IR ← memory data bus;
PC ← PC + 1;

reset

instruction
fetchFetch

FSM controller for CPU
(decode)

Operation decode state
next state branch based on operation code in
instruction
read two operands out of register file

what if the instruction doesn’t have two operands?

instruction
decodeDecode

branch based on value of
Inst[15:13] and Inst[3:0]

add

FSM controller for CPU
(instruction execution)

For add instruction
configure ALU and store result in register

rd ← A + B

other instructions may require multiple cycles

instruction
executionadd

FSM controller for CPU (add
instruction)

Putting it all together
and closing the loop

the famous
instruction
fetch
decode
execute
cycle

reset

instruction
fetchFetch

instruction
decodeDecode

add
instruction
executionadd

FSM controller for CPU
Now we need to repeat this for all the instructions of our
processor

fetch and decode states stay the same
different execution states for each instruction

some may require multiple states if available
register transfer paths require sequencing of steps

