
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 25: Computer Organization

Last Lecture
Design Examples

Today
Computer Organization

Administrivia
Homework 9 out. Due June 2.

The following is a state transition table for a FSM which takes as input
one bit, X and outputs one bit O. The machine is a Moore machine.

Current State Current O Next State
X=0 X=1

S1 0 S2 S4
S2 0 S2 S7
S3 0 S7 S4
S4 1 S3 S6
S5 0 S2 S4
S6 0 S7 S4
S7 1 S6 S3

Computer organization
Computer design – an application of digital logic design
procedures
Computer = processing unit + memory system
Processing unit = control + datapath
Control = finite state machine

inputs = machine instruction, datapath conditions
outputs = register transfer control signals, ALU operation
codes
instruction interpretation = instruction fetch, decode,
execute

Datapath = functional units + registers
functional units = ALU, multipliers, dividers, etc.
registers = program counter, shifters, storage registers

central processing
unit (CPU)

instruction unit
– instruction fetch and
interpretation FSM

execution unit
– functional units
and registers

address

read/write

data

Processor Memory
System

Structure of a computer
Block diagram view

control signals

data conditions
Data PathControl

LD asserted during a lo-to-hi clock
transition loads new data into FFs

OE asserted causes FF state to be
connected to output pins; otherwise they

are left unconnected (high impedance)

OE

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

LD

D7
D6
D5
D4
D3
D2
D1
D0 CLK

Registers
Selectively loaded – EN or LD input
Output enable – OE input
Multiple registers – group 4 or 8 in parallel

Register transfer
Point-to-point connection

dedicated wires
muxes on inputs of
each register

Common input from multiplexer
load enables
for each register
control signals
for multiplexer

Common bus with output enables
output enables and load
enables for each register

rt

MUX

rs

MUX

rd

MUX

R4

MUX

rs

MUX

rt rd R4

BUS

rs rt rd R4

RE
RB
RA

WE
WB
WA

D3
D2
D1
D0

Q3
Q2
Q1
Q0

Register files
Collections of registers in one package

two-dimensional array of FFs
address used as index to a particular word
can have separate read and write addresses so can
do both at same time

4 by 4 register file
16 D-FFs
organized as four words of four bits each
write-enable (load)
read-enable (output enable)

RD

WR

A9
A8
A7
A6
A5
A4
A3
A2
A2
A1
A0

IO3
IO2
IO1
IO0

Memories
Larger collections of storage elements

implemented not as FFs but as much more efficient latches
high-density memories use 1 to 5 switches (transitors) per
memory bit

Static RAM – 1024 words each 4 bits wide
once written, memory holds forever (not true for denser
dynamic RAM)
address lines to select word (10 lines for 1024 words)
read enable

same as output enable
often called chip select
permits connection of many
chips into larger array

write enable (same as load enable)
bi-directional data lines

output when reading, input when writing

Instruction sequencing
Example – an instruction to
add the contents of two registers (Rx and Ry)
and place result in a third register (Rz)
Step 1: get the ADD instruction from memory into an
instruction register
Step 2: decode instruction

instruction in IR has the code of an ADD instruction
register indices used to generate output enables for
registers Rx and Ry
register index used to generate load signal for register Rz

Step 3: execute instruction
enable Rx and Ry output and direct to ALU
setup ALU to perform ADD operation
direct result to Rz so that it can be loaded into register

Instruction types
Data manipulation

add, subtract
increment, decrement
multiply
shift, rotate
immediate operands

Data staging
load/store data to/from memory
register-to-register move

Control
conditional/unconditional branches in program flow
subroutine call and return

Elements of the control unit
(aka instruction unit)

Standard FSM elements
state register
next-state logic
output logic (datapath/control signalling)
Moore or synchronous Mealy machine to avoid loops
unbroken by FF

Plus additional "control" registers
instruction register (IR)
program counter (PC)

Inputs/outputs
outputs control elements of data path
inputs from data path used to alter flow of program
(test if zero)

Reset

Initialize
Machine

Register-
to-Register

Branch
Not Taken

Branch
Taken

Instruction execution
Control state diagram (for each diagram)

reset
fetch instruction
decode
execute

Instructions partitioned into three classes
branch
load/store
register-to-register

Different sequence through
diagram for each
instruction type

Init

Fetch
Instr.

XEQ
Instr.

Load/
StoreBranch

Incr.
PC

Cin

Ain
Bin Sum

Cout

FA

HA
Ain

Bin

Sum

Cin
CoutHA

Data path (hierarchy)
Arithmetic circuits constructed
in hierarchical and modular fashion

each bit in datapath
is functionally identical
4-bit, 8-bit, 16-bit, 32-bit datapaths

16 16
A B

S ZN

Operation

16

Data path (ALU)
ALU block diagram

input: data and operation to perform
output: result of operation and status information

16

Z

N

OP

16

ACREG

16

16

Data path (ALU + registers)
Accumulator

special register
one of the inputs to ALU
output of ALU stored back in accumulator

One-address instructions
operation and address of one operand
other operand and destination
is accumulator register
AC <– AC op Mem[addr]
"single address instructions”
(AC implicit operand)

Multiple registers
part of instruction used
to choose register operands

2 bits wide1 bit wide

Data path (bit-slice)
Bit-slice concept – replicate to build n-bit wide datapaths

CO CIALU

AC

R0

from
memory

rs

rt

rd

CO ALU

AC

R0

from
memory

rs

rt

rd

CIALU

AC

R0

from
memory

rs

rt

rd

Instruction path
Program counter (PC)

keeps track of program execution
address of next instruction to read from memory
may have auto-increment feature or use ALU

Instruction register (IR)
current instruction
includes ALU operation and address of operand
also holds target of jump instruction
immediate operands

Relationship to data path
PC may be incremented through ALU
contents of IR may also be required as input to ALU –
immediate operands

Data path (memory interface)
Memory

separate data and instruction memory (Harvard
architecture)

two address busses, two data busses
single combined memory (Princeton architecture)

single address bus, single data bus
Separate memory

ALU output goes to data memory input
register input from data memory output
data memory address from instruction register
instruction register from instruction memory output
instruction memory address from program counter

Single memory
address from PC or IR
memory output to instruction and data registers
memory input from ALU output

Control
FSM

16 16

Z

N

OP

16

ACREG

16
load
path

store
path

Data Memory
(16-bit words)

16 16

OP

16

PCIR

16

data

addr

rd wr

Inst Memory
(8-bit words)

data

addr

Block diagram of processor
(Harvard)

Register transfer view of Harvard architecture
which register outputs are connected to which register inputs
arrows represent data-flow, other are control signals from control
FSM
two MARs (PC and IR)
two MBRs (REG and IR)
load control for each register

16

Z

N

OP

8

ACREG
16

16
load
path

store
path

Data Memory
(16-bit words)

16

OP

16

PCIR

16

16

data

addr

rd wr

MARControl
FSM

Block diagram of processor
(Princeton)

Register transfer view of Princeton architecture
which register outputs are connected to which register inputs
arrows represent data-flow, other are control signals from control
FSM
MAR may be a simple multiplexer
rather than separate register
MBR is split in two (REG and IR)
load control for each register

