CSE 370 Spring 2006
Introduction to Digital Design

Lecture 25: Computer Organization

Last Lecture
E Design Examples

Today
F Computer Organization

Administrivia
mHomework 9 out. Due June 2.

Extea Gredit

— oyt gui
- HW Voi/d‘g
WO‘#&TOV\'I@L\‘I“

The following is a state transition table for a FSM which takes as input
one bit, X and outputs one bit O. The machine is a Moore machine.

Current State Current O Next State
X=0 X=1
S1 0 S2 S4
S2 0 S2 S7 0= 5(~
S3 0 S7 S4
sS4 1 S3 S6 S5=3,
S5 0 S2 S4 \V
S6 0 S7 S4
S7 1 S6 S3 S = S >

Computer organization

m Computer design — an application of digital logic design
procedures

m Computer = processing unit + memory system
m Processing unit = control + datapath
m Control = finite state machine
E inputs = machine instruction, datapath conditions

E outputs = register transfer control signals, ALU operation
codes

E instruction interpretation = instruction fetch, decode,
execute

m Datapath = functional units + registers
E functional units = ALU, multipliers, dividers, etc.
E registers = program counter, shifters, storage registers

Structure of a computer

m Block diagram view

/ Processor

ey
N

central processing
unit (CPU)

control signals
data conditions
instruction unit

— instruction fetch and
interpretation FSM

execution unit
— functional units
and registers

Registers

m Selectively loaded — EN or LD input
m Output enable — OE input
m Multiple registers — group 4 or 8 in parallel

——ILD OE—

D7 7 OE asserted causes FF state to be
— D6 6—— connected to output pins; otherwise they
— Bi 2— are left unconnected (high impedance)
——D3 33— . .

— D2 2 LD asserted during a lo-to-hi clock
—D1 1I— transition loads new data into FFs
——ID0 (LK Oo—

Register transfer

m Point-to-point connection

E dedicated wires Mll

by T U
. [Mux] [Mux] [Mux] [MUx]
E muxes on inputs of | | | |
each register [| [] [a]| [re]
| | I S|
m Common input from multiplexer T T T
E load enables Les | [| [d | [R4
for each register 1 I
® control signals | M‘ix |
for multiplexer
: ! !
m Common bus with outputenables[rs | [« | [d | [R4 |
E output enables and load |]

enables for each register BUS

Register files

m Collections of registers in one package
B two-dimensional array of FFs
B address used as index to a particular word

E can have separate read and write addresses so can
do both at same time

m 4 by 4 register file

E 16 D-FFs

e
w

|
:

B write-enable (load) — WA
E read-enable (output enable)

E organized as four words of four bits each:WE §3

lw)
=

Memories

m Larger collections of storage elements
E implemented not as FFs but as much more efficient latches

E high-density memories use 1 to 5 switches (transitors) per
memory bit

m Static RAM — 1024 words each 4 bits wide

E once written, memory holds forever (not true for denser
dynamic RAM)

E address lines to select word (10 lines for 1024 words)
E read enable RD

F same as output enable WR

E often called chip select A9 ol

B pe_rmit_s connection of many A 02—
chips into larger array —

E write enable (same as load enable)
E bi-directional data lines
E output when reading, input when writing

>

o
s
o

Instruction sequencing

B Example — an instruction to
add the contents of two registers (Rx and Ry)
and place result in a third register (Rz)

m Step 1: get the ADD instruction from memory into an
instruction register

m Step 2: decode instruction
B instruction in IR has the code of an ADD instruction

E register indices used to generate output enables for
registers Rx and Ry

B register index used to generate load signal for register Rz
m Step 3: execute instruction

E enable Rx and Ry output and direct to ALU

B setup ALU to perform ADD operation

B direct result to Rz so that it can be loaded into register

Instruction types

m Data manipulation
E add, subtract
F increment, decrement
F multiply
E shift, rotate
B immediate operands
m Data staging
B load/store data to/from memory
E register-to-register move
m Control
B conditional/unconditional branches in program flow
B subroutine call and return

Elements of the control unit
(aka instruction unit)

m Standard FSM elements
E state register
F next-state logic
E output logic (datapath/control signalling)

E Moore or synchronous Mealy machine to avoid loops
unbroken by FF

m Plus additional "control" registers
E instruction register (IR)
E program counter (PC)
m Inputs/outputs
E outputs control elements of data path

E inputs from data path used to alter flow of program
(test if zero)

Instruction execution

m Control state diagram (for each diagram) Reset

B reset

E fetch instruction @ o
Initialize

B decode Machine

E execute

m Instructions partitioned into three classes
B branch
B load/store

B register-to-register
Branch Branc|

m Different sequence through Taken Not Takn
diagram for each
instruction type

Re ister-
to-Register

Data path (hierarchy)

m Arithmetic circuits constructed Cin
in hierarchical and modular fashion |
B each bit in datapath Q.'Q FA - T Sum

is functionally identical
B 4-bit, 8-bit, 16-bit, 32-bit datapaths

Ain Sum
HA

Bin| — ——)
V| HA |—D Cout

?7\

>
I~

Cout

Data path (ALU)

m ALU block diagram
E input: data and operation to perform
B output: result of operation and status information

A

fx 1

. —_—
Operation \

Data path (ALU + registers)

m Accumulator
I special register
B one of the inputs to ALU
I output of ALU stored back in accumulator
m One-address instructions
B operation and address of one operand

B other operand and destination 1 |
is accumulator register | rec || ac |

E AC <— AC op Meml[addr] 16 16

B "single address instructions” _op \

(AC implicit operand)
m Multiple registers

B part of instruction used
to choose register operands

S

Data path (bit-slice)

m Bit-slice concept — replicate to build n-bit wide datapaths

Cco ALU Cl Cco ALU I_ALU Cl

AC AC AC

— RO [] — RO [] — RO [

—1 rs [—1 rs [—1 rs [

— ot [— ot [— ot [

—1 rd [—1 rd [—{ rd [
from from from

[“—memory [“—memory [“—memory
1 bit wide 2 bits wide

Instruction path

m Program counter (PC)
E keeps track of program execution
E address of next instruction to read from memory
E may have auto-increment feature or use ALU
m Instruction register (IR)
E current instruction
F includes ALU operation and address of operand
E also holds target of jump instruction
F immediate operands
m Relationship to data path
F PC may be incremented through ALU

B contents of IR may also be required as input to ALU —
immediate operands

Data path (memory interface)

m Memory
B separate data and instruction memory (Harvard
architecture)
Ftwo address busses, two data busses
E single combined memory (Princeton architecture)
Esingle address bus, single data bus
m Separate memory
® ALU output goes to data memory input
E register input from data memory output
E data memory address from instruction register
E instruction register from instruction memory output
E instruction memory address from program counter
m Single memory
E address from PC or IR
E memory output to instruction and data registers
E memory input from ALU output

Block diagram of processor
(Harvard)

m Register transfer view of Harvard architecture

E which register outputs are connected to which register inputs

E arrows represent data-flow, other are control signals lfrcgjm control
oa
FSM

path
E two MARs (PC and IR) L
rd wr
® two MBRs (REG and R} I e
. Data Memo
B load control for each register 16-bit words|
addr
z
e —
“ PC data
| M
S (B-bit words
0P, addr
16

Block diagram of processor
(Princeton)

m Register transfer view of Princeton architecture
E which register outputs are connected to which register inputs

arrows represent data-flow, other are control signals from control
FSM

MAR may be a simple multiplexer load
A 16 path

rather than separate register ¥

MBR is split in two (REG and IR)

load control for each register

L

" rd wr
w{> data
path
Data Memor
16-bit words]

addr

Control
FSM

MAR

