
CSE 370 Spring 2006
Introduction to Digital Design
Lecture 24: Design Examples

Last Lecture
Factoring FSMs
Output encoding
Communicating FSMs
Design Example

Today
Design Examples

Administrivia
Hand in HW #8

Quiz #4

Sequential logic examples

Basic design approach: a 4-step design process
Implementation examples and case studies

finite-string pattern recognizer
complex counter
door combination lock

General FSM design procedure
(1) Determine inputs and outputs
(2) Determine possible states of machine

state minimization
(3) Encode states and outputs into a binary code

state assignment or state encoding
output encoding
possibly input encoding (if under our control)

(4) Realize logic to implement functions for states and
outputs

combinational logic implementation and optimization
choices in steps 2 and 3 can have large effect on
resulting logic

Mode Input M
0
0
1
1
1
0
0

Current State
000
001
010
110
111
101
110

Next State
001
010
110
111
101
110
111

Complex counter
A synchronous 3-bit counter has a mode control M

when M = 0, the counter counts up in the binary
sequence
when M = 1, the counter advances through the Gray
code sequence

binary: 000, 001, 010, 011, 100, 101, 110, 111
Gray: 000, 001, 011, 010, 110, 111, 101, 100

Valid I/O behavior (partial)

Complex counter (state
diagram)

Deriving state diagram
one state for each output combination
add appropriate arcs for the mode control

S0
[000]

S1
[001]

S2
[010]

S3
[011]

S4
[100]

S5
[101]

S6
[110]

S7
[111]

reset

0

0 0 0 0000
1

1

1
1

11

11

Complex counter (state
encoding)

Verilog description including state encoding

module string (clk, M, rst, Z0, Z1, Z2);
input clk, X, rst;
output Z0, Z1, Z2;

parameter S0 = [0,0,0];
parameter S1 = [0,0,1];
parameter S2 = [0,1,0];
parameter S3 = [0,1,1];
parameter S4 = [1,0,0];
parameter S5 = [1,0,1];
parameter S6 = [1,1,0];
parameter S7 = [1,1,1];

reg state[0:2];

assign Z0 = state[0];
assign Z1 = state[1];
assign Z2 = state[2];

always @(posedge clk) begin
if rst state = S0;
else

case (state)
S0: state = S1;
S1: if (M) state = S3 else state = S2;
S2: if (M) state = S6 else state = S3;
S3: if (M) state = S2 else state = S4;
S4: if (M) state = S0 else state = S5;
S5: if (M) state = S4 else state = S6;
S6: if (M) state = S7 else state = S7;
S7: if (M) state = S5 else state = S0;

endcase

end

endmodule

"puppet"

"puppeteer who pulls the strings"
control

data-path

status
info and
inputs

control
signal
outputs

state

Data-path and control
Digital hardware systems = data-path + control

datapath: registers, counters, combinational
functional units (e.g., ALU), communication (e.g.,
busses)
control: FSM generating sequences of control signals
that instructs datapath what to do next

Digital combinational lock
Door combination lock:

punch in 3 values in sequence and the door opens; if
there is an error the lock must be reset; once the door
opens the lock must be reset

inputs: sequence of input values, reset
outputs: door open/close
memory: must remember combination or always have
it available

open questions: how do you set the internal
combination?

stored in registers (how loaded?)
hardwired via switches set by user

Implementation in software
integer combination_lock () {

integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value());
v1 = read_value();
if (v1 != c[1]) then error = 1;

while (!new_value());
v2 = read_value();
if (v2 != c[2]) then error = 1;

while (!new_value());
v3 = read_value();
if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);
}

resetvalue

open/closed

new

clock

Determining details of the
specification

How many bits per input value?
How many values in sequence?
How do we know a new input value is entered?
What are the states and state transitions of the system?

Digital combination lock state
diagram

States: 5 states
represent point in execution of machine
each state has outputs

Transitions: 6 from state to state, 5 self transitions, 1
global

changes of state occur when clock says its ok
based on value of inputs

Inputs: reset, new, results of comparisons
Output: open/closed

closed closedclosed
C1==value

& new
C2==value

& new
C3==value

& new

C1!=value
& new C2!=value

& new
C3!=value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

reset

open/closed

newC1 C2 C3

comparatorvalue equal

multiplexer
controller

mux
control

clock
4

4 4 4

4

Data-path and control structure
Data-path

storage registers for combination values
multiplexer
comparator

Control
finite-state machine controller
control for data-path (which value to compare)

State table for combination lock

Finite-state machine
refine state diagram to take internal structure into
account
state table ready for encoding

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...

next

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 – 1
...

next

mux is identical to last 3 bits of state
open/closed is identical to first bit of state
therefore, we do not even need to implement
FFs to hold state, just use outputs

reset

open/closed

new

equal

controller

mux
control

clock

Encodings for combination lock
Encode state table

state can be: S1, S2, S3, OPEN, or ERR
needs at least 3 bits to encode: 000, 001, 010, 011, 100
and as many as 5: 00001, 00010, 00100, 01000, 10000
choose 4 bits: 0001, 0010, 0100, 1000, 0000

output mux can be: C1, C2, or C3
needs 2 to 3 bits to encode
choose 3 bits: 001, 010, 100

output open/closed can be: open or closed
needs 1 or 2 bits to encode
choose 1 bit: 1, 0 C1 C2 C3

comparator
equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

value

equal

Data-path implementation
for combination lock

Multiplexer
easy to implement as combinational logic when few inputs
logic can easily get too big for most PLDs

C1 C2 C3

comparator equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

value

equal

+ oc

open-collector connection
(zero whenever one connection is zero,

one otherwise – wired AND)

tri-state driver
(can disconnect

from output)

Data-path implementation
(cont’d)

Tri-state logic
utilize a third output state: “no connection” or “float”
connect outputs together as long as only one is “enabled”
open-collector gates can
only output 0, not 1

can be used to implement
logical AND with only wires

In OE Out
X 0 Z
0 1 0
1 1 1

non-inverting
tri-state
buffer

100

In

OE

Out

Tri-state gates
The third value

logic values: “0”, “1”
don't care: “X” (must be 0 or 1 in real circuit!)
third value or state: “Z” — high impedance, infinite R, no connection

Tri-state gates
additional input – output enable (OE)
output values are 0, 1, and Z
when OE is high, the gate functions normally
when OE is low, the gate is disconnected from wire at output
allows more than one gate to be connected to the same output wire

as long as only one has its output enabled at any one time
(otherwise, sparks could fly)

In Out

OE

when Select is high
Input1 is connected to F

when Select is low
Input0 is connected to F

this is essentially a 2:1 mux

OE

OE

FInput0

Input1

Select

Tri-state and multiplexing
When using tri-state logic

(1) make sure never more than one "driver" for a wire at any
one time
(pulling high and low at the same time can severely damage
circuits)
(2) make sure to only use value on wire when its being driven
(using a floating value may cause failures)

Using tri-state gates to implement an economical multiplexer

open-collector
NAND gates

with ouputs wired together
using "wired-AND"
to form (AB)'(CD)'

Open-collector gates and wired-AND
Open collector: another way to connect gate outputs to the same wire

gate only has the ability to pull its output low
it cannot actively drive the wire high (default – pulled high through
resistor)

Wired-AND can be implemented with open collector logic
if A and B are "1", output is actively pulled low
if C and D are "1", output is actively pulled low
if one gate output is low and the other high, then low wins
if both gate outputs are "1", the wire value "floats", pulled high by
resistor

low to high transition usually slower than it would have been
with a gate pulling high

hence, the two NAND functions are ANDed together

C1 C2 C3

comparatorvalue equal

multiplexer

mux
control

4

4 4 4

4

ld1 ld2 ld3

Digital combination lock (new
data-path)

Decrease number of inputs
Remove 3 code digits as inputs

use code registers
make them loadable from value
need 3 load signal inputs (net gain in input (4*3)–3=9)

could be done with 2 signals and decoder
(ld1, ld2, ld3, load none)

Section summary

FSM design
understanding the problem
generating state diagram
communicating state machines

Four case studies
understand I/O behavior
draw diagrams
enumerate states for the "goal"
expand with error conditions
reuse states whenever possible

