
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 23: Factoring FSMs
Design Examples

Last Lecture
FSM minimization

Today
Factoring FSMs
Output encoding
Communicating FSMs
Design Example

Administrivia
No class this Friday (check out the undergraduate research

symposium)
HW 8 due Monday, May 22

Example: traffic light controller
A busy highway is intersected by a little used farmroad
Detectors C sense the presence of cars waiting on the farmroad

with no car on farmroad, light remain green in highway direction
if vehicle on farmroad, highway lights go from Green to Yellow
to Red, allowing the farmroad lights to become green
these stay green only as long as a farmroad car is detected but
never longer than a set interval
when these are met, farm lights transition from Green to Yellow
to Red, allowing highway to return to green
even if farmroad vehicles are waiting, highway gets at least a
set interval as green

Assume: short time interval of yellow light is five cycles
Assume: max time for green on farm road and minimum green
on highway is 20 cycles

highway

farm road

car sensors

Example: traffic light
controller (cont’)

Highway/farm road intersection

Example: traffic light
controller (cont’)

Tabulation of inputs and outputs
inputs description outputs description
reset place FSM in initial state HG, HY, HR assert green/yellow/red highway lights
C detect vehicle on the farm road FG, FY, FR assert green/yellow/red highway lights

Tabulation of unique states – some light configurations imply
others

state description
HG highway green (farm road red)
HY highway yellow (farm road red)
FG farm road green (highway red)
FY farm road yellow (highway red)

Example: traffic light controller (cont’)

C'

HG HY0
C'

HY1 HY2 HY3 HY4

Initial attempt:

Continuing in this way would quickly get us to huge FSM

Solution: Factor the FSM

Assume you have an interval timer that generates:
a short time pulse (TS) and
a long time pulse (TL),
in response to a set (ST) signal.
TS is to be used for timing yellow lights and TL for

green lights

Example: traffic light controller (cont’) Example: traffic light
controller (cont’)

Tabulation of inputs and outputs
inputs description outputs description
reset place FSM in initial state HG, HY, HR assert green/yellow/red highway lights
C detect vehicle on the farm road FG, FY, FR assert green/yellow/red highway lights
TS short time interval expired ST start timing a short or long interval
TL long time interval expired

Tabulation of unique states – some light configurations imply
others

state description
HG highway green (farm road red)
HY highway yellow (farm road red)
FG farm road green (highway red)
FY farm road yellow (highway red)

Example: traffic light
controller (cont’)

State diagram
Reset

TS'

TS / ST

(TL•C)'

TL•C / ST

TS'

TS / ST

(TL+C')'

TL+C' / ST

HG

FG

FYHY

Inputs Present State Next State Outputs
C TL TS ST H F
0 – – HG HG 0 Green Red
– 0 – HG HG 0 Green Red
1 1 – HG HY 1 Green Red
– – 0 HY HY 0 Yellow Red
– – 1 HY FG 1 Yellow Red
1 0 – FG FG 0 Red Green
0 – – FG FY 1 Red Green
– 1 – FG FY 1 Red Green
– – 0 FY FY 0 Red Yellow
– – 1 FY HG 1 Red Yellow

SA1: HG = 00 HY = 01 FG = 11 FY = 10
SA2: HG = 00 HY = 10 FG = 01 FY = 11
SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000 (one-hot)

output encoding – similar problem
to state assignment
(Green = 00, Yellow = 01, Red = 10)

Example: traffic light
controller (cont’)

Generate state table with symbolic states
Consider state assignments

Logic for different state
assignments

SA1
NS1 = C•TL'•PS1•PS0 + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
NS0 = C•TL•PS1'•PS0' + C•TL'•PS1•PS0 + PS1'•PS0

ST = C•TL•PS1'•PS0' + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
H1 = PS1 H0 = PS1'•PS0
F1 = PS1' F0 = PS1•PS0‘

SA2
NS1 = C•TL•PS1' + TS'•PS1 + C'•PS1'•PS0
NS0 = TS•PS1•PS0' + PS1'•PS0 + TS'•PS1•PS0

ST = C•TL•PS1' + C'•PS1'•PS0 + TS•PS1
H1 = PS0 H0 = PS1•PS0'
F1 = PS0' F0 = PS1•PS0

SA3
NS3 = C'•PS2 + TL•PS2 + TS'•PS3 NS2 = TS•PS1 + C•TL'•PS2
NS1 = C•TL•PS0 + TS'•PS1 NS0 = C'•PS0 + TL'•PS0 + TS•PS3

ST = C•TL•PS0 + TS•PS1 + C'•PS2 + TL•PS2 + TS•PS3
H1 = PS3 + PS2 H0 = PS1
F1 = PS1 + PS0 F0 = PS3

Output-based encoding
Reuse outputs as state bits - use outputs to help
distinguish states

why create new functions for state bits when output can
serve as well
fits in nicely with synchronous Mealy implementations

HG = ST’ H1’ H0’ F1 F0’ + ST H1 H0’ F1’ F0
HY = ST H1’ H0’ F1 F0’ + ST’ H1’ H0 F1 F0’
FG = ST H1’ H0 F1 F0’ + ST’ H1 H0’ F1’ F0’
HY = ST H1 H0’ F1’ F0’ + ST’ H1 H0’ F1’ F0

Output patterns are unique to states, we do not
need ANY state bits – implement 5 functions
(one for each output) instead of 7 (outputs plus
2 state bits)

Inputs Present State Next State Outputs
C TL TS ST H F
0 – – HG HG 0 00 10
– 0 – HG HG 0 00 10
1 1 – HG HY 1 00 10
– – 0 HY HY 0 01 10
– – 1 HY FG 1 01 10
1 0 – FG FG 0 10 00
0 – – FG FY 1 10 00
– 1 – FG FY 1 10 00
– – 0 FY FY 0 10 01
– – 1 FY HG 1 10 01

Current state assignment
approaches

For tight encodings using close to the minimum number
of state bits

best of 10 random seems to be adequate (averages as
well as heuristics)
heuristic approaches are not even close to optimality
used in custom chip design

One-hot encoding
easy for small state machines
generates small equations with easy to estimate
complexity
common in FPGAs and other programmable logic

Output-based encoding
ad hoc - no tools
most common approach taken by human designers
yields very small circuits for most FSMs

Sequential logic optimization
summary

State minimization
straightforward in fully-specified machines
computationally intractable, in general (with don’t
cares)

State assignment
many heuristics
best-of-10-random just as good or better for most
machines
output encoding can be attractive (especially for PAL
implementations)

traffic light
controller

timer

TLTSST

Traffic light controller
as two communicating FSMs

module FSM(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);
output HR;
output HY;
output HG;
output FR;
output FY;
output FG;
output ST;
input TS;
input TL;
input C;
input reset;
input Clk;

reg [6:1] state;
reg ST;

parameter highwaygreen = 6'b001100;
parameter highwayyellow = 6'b010100;
parameter farmroadgreen = 6'b100001;
parameter farmroadyellow = 6'b100010;

assign HR = state[6];
assign HY = state[5];
assign HG = state[4];
assign FR = state[3];
assign FY = state[2];
assign FG = state[1];

specify state bits and codes
for each state as well as
connections to outputs

Traffic light controller FSM

Specification of inputs, outputs, and state elements

initial begin state = highwaygreen; ST = 0; end

always @(posedge Clk)
begin
if (reset)
begin state = highwaygreen; ST = 1; end

else
begin
ST = 0;
case (state)

highwaygreen:
if (TL & C) begin state = highwayyellow; ST = 1; end

highwayyellow:
if (TS) begin state = farmroadgreen; ST = 1; end

farmroadgreen:
if (TL | !C) begin state = farmroadyellow; ST = 1; end

farmroadyellow:
if (TS) begin state = highwaygreen; ST = 1; end

endcase
end

end
endmodule

Traffic light controller FSM
(cont’d)

case statement
triggerred by
clock edge

module Timer(TS, TL, ST, Clk);
output TS;
output TL;
input ST;
input Clk;
integer value;

assign TS = (value >= 4); // 5 cycles after reset
assign TL = (value >= 14); // 15 cycles after reset

always @(posedge ST) value = 0; // async reset

always @(posedge Clk) value = value + 1;

endmodule

Timer for traffic light controller

Another FSM

module main(HR, HY, HG, FR, FY, FG, reset, C, Clk);
output HR, HY, HG, FR, FY, FG;
input reset, C, Clk;

Timer part1(TS, TL, ST, Clk);
FSM part2(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);

endmodule

Complete traffic light controller

Tying it all together (FSM + timer)
structural Verilog (same as a schematic drawing)

traffic light
controller

timer

TLTSST
machines advance in lock step
initial inputs/outputs: X = 0, Y = 0

CLK

FSM1

X

FSM2

Y

A A B

C D D

FSM 1 FSM 2

X

Y

Y==1

A
[1]

Y==0

B
[0]

Y==0

X==1

C
[0]

X==0
X==0

D
[1]

X==1
X==0

Communicating finite state
machines

One machine's output is another machine's input

Sequential logic examples

Basic design approach: a 4-step design process
Implementation examples and case studies

finite-string pattern recognizer
complex counter
door combination lock

General FSM design procedure
(1) Determine inputs and outputs
(2) Determine possible states of machine

state minimization
(3) Encode states and outputs into a binary code

state assignment or state encoding
output encoding
possibly input encoding (if under our control)

(4) Realize logic to implement functions for states and
outputs

combinational logic implementation and optimization
choices in steps 2 and 3 can have large effect on
resulting logic

Finite string pattern recognizer
(step 1)

Finite string pattern recognizer
one input (X) and one output (Z)
output is asserted whenever the input sequence
…010… has been
observed, as long as the sequence …100… has never
been seen

Step 1: understanding the problem statement
sample input/output behavior:

X: 0 0 1 0 1 0 1 0 0 1 0 …
Z: 0 0 0 1 0 1 0 1 0 0 0 …

X: 1 1 0 1 1 0 1 0 0 1 0 …
Z: 0 0 0 0 0 0 0 1 0 0 0 …

Finite string pattern
recognizer (step 2)

Step 2: draw state diagram
for the strings that must be recognized, i.e., 010 and
100
a Moore implementation

S1
[0]

S2
[0]

0

1

S3
[1]

0

S4
[0]

1

0 or 1

S5
[0]

0

0

S6
[0]

S0
[0]

reset

Finite string pattern
recognizer (step 2, cont’d)

Exit conditions from state S3: have recognized …010
if next input is 0 then have …0100 = ...100 (state S6)
if next input is 1 then have …0101 = …01 (state S2)

Exit conditions from S1: recognizes
strings of form …0 (no 1 seen)

loop back to S1 if input is 0
Exit conditions from S4: recognizes
strings of form …1 (no 0 seen)

loop back to S4 if input is 1
1

...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

10

1

reset

0 or 1S3
[1]

0

S5
[0]

0

0

S6
[0]

...1...0
10

Finite string pattern recognizer
(step 2, cont’d)

S2 and S5 still have incomplete transitions
S2 = …01; If next input is 1,
then string could be prefix of (01)1(00)
S4 handles just this case
S5 = …10; If next input is 1,
then string could be prefix of (10)1(0)
S2 handles just this case

Reuse states as much as possible
look for same meaning
state minimization leads to
smaller number of bits to
represent states

Once all states have a complete
set of transitions we have a
final state diagram

1
...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

10

1

reset

0 or 1S3
[1]

0

S5
[0]

0

0

S6
[0]

...1...0
10

...10

1

1

module string (clk, X, rst, Q0, Q1, Q2, Z);
input clk, X, rst;
output Q0, Q1, Q2, Z;

parameter S0 = [0,0,0]; //reset state
parameter S1 = [0,0,1]; //strings ending in ...0
parameter S2 = [0,1,0]; //strings ending in ...01
parameter S3 = [0,1,1]; //strings ending in ...010
parameter S4 = [1,0,0]; //strings ending in ...1
parameter S5 = [1,0,1]; //strings ending in ...10
parameter S6 = [1,1,0]; //strings ending in ...100

reg state[0:2];

assign Q0 = state[0];
assign Q1 = state[1];
assign Q2 = state[2];
assign Z = (state == S3);

always @(posedge clk) begin
if (rst) state = S0;
else

case (state)
S0: if (X) state = S4 else state = S1;
S1: if (X) state = S2 else state = S1;
S2: if (X) state = S4 else state = S3;
S3: if (X) state = S2 else state = S6;
S4: if (X) state = S4 else state = S5;
S5: if (X) state = S2 else state = S6;
S6: state = S6;
default: begin

$display (“invalid state reached”);
state = 3’bxxx;

end
endcase

end

endmodule

Finite string pattern
recognizer (step 3)

Verilog description including state assignment (or state
encoding)

Finite string pattern recognizer
Review of process

understanding problem
write down sample inputs and outputs to understand
specification

derive a state diagram
write down sequences of states and transitions for
sequences to be recognized

minimize number of states
add missing transitions; reuse states as much as possible

state assignment or encoding
encode states with unique patterns

simulate realization
verify I/O behavior of your state diagram to ensure it
matches specification

