CSE 370 Spring 2006
Introduction to Digital Design
Lecture 22: Optimizing FSMs

Last Lecture
- Ant Brain

Today
- Optimizing FSMs

Administrivia
- Homework 8 out, due Monday, May 22
- No class Friday, May 19
- Lab 8,9 out, Lab 8 due end of next weeks laboratory section

Finite state machine optimization
- State minimization
 - fewer states require fewer state bits
 - fewer bits require fewer logic equations
- Encodings: state, inputs, outputs
 - state encoding with fewer bits has fewer equations to implement
 - however, each may be more complex
 - state encoding with more bits (e.g., one-hot) has simpler equations
 - complexity directly related to complexity of state diagram
 - input/output encoding may or may not be under designer control

Algorithmic approach to state minimization
- Goal – identify and combine states that have equivalent behavior
- Equivalent states:
 - same output
 - for all input combinations, states transition to same or equivalent states
- Algorithm sketch
 - 1. place all states in one set
 - 2. initially partition set based on output behavior
 - 3. successively partition resulting subsets based on next state transitions
 - 4. repeat (3) until no further partitioning is required
 - states left in the same set are equivalent
 - polynomial time procedure
State minimization example

- Sequence detector for 010 or 110

<table>
<thead>
<tr>
<th>Input Sequence</th>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
<th>X=0</th>
<th>X=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>S0</td>
<td>S1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>S1</td>
<td>S3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>S2</td>
<td>S5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>S3</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>S4</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>S5</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>S6</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- S1 is equivalent to S2
- S3 is equivalent to S5
- S4 is equivalent to S6

Method of successive partitions

<table>
<thead>
<tr>
<th>Input Sequence</th>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
<th>X=0</th>
<th>X=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>S0</td>
<td>S1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>S1</td>
<td>S3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>S2</td>
<td>S5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>S3</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>S4</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>S5</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>S6</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(S0 S1 S2 S3 S4 S5 S6)

S1 is equivalent to S2
S3 is equivalent to S5
S4 is equivalent to S6

Minimized FSM

- State minimized sequence detector for 010 or 110

<table>
<thead>
<tr>
<th>Input Sequence</th>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
<th>X=0</th>
<th>X=1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset</td>
<td>S0</td>
<td>S1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 + 1</td>
<td>S1'</td>
<td>S3'</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X0</td>
<td>S3'</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X1</td>
<td>S4'</td>
<td>S0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

More complex state minimization

- Multiple input example

<table>
<thead>
<tr>
<th>Present state</th>
<th>00</th>
<th>01</th>
<th>10</th>
<th>11</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S0</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td>S0</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>1</td>
</tr>
<tr>
<td>S2</td>
<td>S0</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>1</td>
</tr>
<tr>
<td>S3</td>
<td>S0</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>1</td>
</tr>
<tr>
<td>S4</td>
<td>S0</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>1</td>
</tr>
<tr>
<td>S5</td>
<td>S0</td>
<td>S1</td>
<td>S1</td>
<td>S1</td>
<td>1</td>
</tr>
</tbody>
</table>

inputs here

symbolic state transition table
Minimized FSM

- Implication chart method
 - cross out incompatible states based on outputs
 - then cross out more cells if indexed chart entries are already crossed out

<table>
<thead>
<tr>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0'</td>
<td>S0' S1 S2 S3'</td>
<td>1</td>
</tr>
<tr>
<td>S1</td>
<td>S0' S3' S1 S3'</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>S1 S3' S2 S0'</td>
<td>1</td>
</tr>
<tr>
<td>S3'</td>
<td>S1 S0' S0' S3'</td>
<td>0</td>
</tr>
</tbody>
</table>

Minimized state table
(S0==S4) (S3==S5)

Exercise

- Minimize states for sequence detector for 010 or 110 using the implication chart method

<table>
<thead>
<tr>
<th>Input Sequence</th>
<th>Present State</th>
<th>Next State</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset 0</td>
<td>S0</td>
<td>S1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>S2</td>
<td>S3</td>
<td>0</td>
</tr>
<tr>
<td>00</td>
<td>S3</td>
<td>S0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>S4</td>
<td>S0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>S5</td>
<td>S0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>S6</td>
<td>S0</td>
<td>1</td>
</tr>
</tbody>
</table>

Minimizing incompletely specified FSMs

- Equivalence of states is transitive when machine is fully specified
- But its not transitive when don't cares are present

e.g., state output

 S0 – 0 S1 is compatible with both S0 and S2
 S1 1 – but S0 and S2 are incompatible
 S2 – 1

- No polynomial time algorithm exists for determining best grouping of states into equivalent sets that will yield the smallest number of final states

Minimizing states may not yield best circuit

- Example: edge detector - outputs 1 when last two input changes from 0 to 1

\[
Q_1 = X \oplus Q_0
\]

\[
Q_0' = X \quad Q_1 \oplus Q_0
\]
Another implementation of edge detector

- "Ad hoc" solution - not minimal but cheap and fast

State assignment

- Choose bit vectors to assign to each "symbolic" state
 - with \(n \) state bits for \(m \) states there are \(2^n! / (2^n - m)! \)
 - \(\log n \leq m \leq 2^n \)
 - \(2^n \) codes possible for 1st state, \(2^n - 1 \) for 2nd, \(2^n - 2 \) for 3rd, ...
 - huge number even for small values of \(n \) and \(m \)
 - intractable for state machines of any size
 - heuristics are necessary for practical solutions
 - optimize some metric for the combinational logic
 - size (amount of logic and number of FFs)
 - speed (depth of logic and fanout)
 - dependencies (decomposition)

State assignment strategies

- Possible strategies
 - sequential – just number states as they appear in the state table
 - random – pick random codes
 - one-hot – use as many state bits as there are states (bit=1 → state)
 - output – use outputs to help encode states
 - heuristic – rules of thumb that seem to work in most cases
- No guarantee of optimality – another intractable problem

One-hot state assignment

- Simple
 - easy to encode
 - easy to debug
- Small logic functions
 - each state function requires only predecessor state bits as input
- Good for programmable devices
 - lots of flip-flops readily available
 - simple functions with small support (signals its dependent upon)
- Impractical for large machines
 - too many states require too many flip-flops
 - decompose FSMs into smaller pieces that can be one-hot encoded
- Many slight variations to one-hot
 - one-hot + all-0
Heuristics for state assignment

- Adjacent codes to states that share a common next state
 - group 1's in next state map

\[
\begin{array}{c|cccc}
\alpha & Q & Q^* & O \\
\hline
i & a & c & j \\
i & b & c & k
\end{array}
\]

- Adjacent codes to states that share a common ancestor state
 - group 1's in next state map

\[
\begin{array}{c|cccc}
\alpha & Q & Q^* & O \\
\hline
i & a & b & j \\
k & a & c & l
\end{array}
\]

- Adjacent codes to states that have a common output behavior
 - group 1's in output map

\[
\begin{array}{c|cccc}
\alpha & Q & Q^* & O \\
\hline
i & a & b & j \\
i & c & d & j
\end{array}
\]

General approach to heuristic state assignment

- All current methods are variants of this
 - 1) determine which states “attract” each other (weighted pairs)
 - 2) generate constraints on codes (which should be in same cube)
 - 3) place codes on Boolean cube so as to maximize constraints satisfied (weighted sum)

- Different weights make sense depending on whether we are optimizing for two-level or multi-level forms
- Can't consider all possible embeddings of state clusters in Boolean cube
 - heuristics for ordering embedding
 - to prune search for best embedding
 - expand cube (more state bits) to satisfy more constraints

Output-based encoding

- Reuse outputs as state bits - use outputs to help distinguish states
 - why create new functions for state bits when output can serve as well
 - fits in nicely with synchronous Mealy implementations

Current state assignment approaches

- For tight encodings using close to the minimum number of state bits
 - best of 10 random seems to be adequate (averages as well as heuristics)
 - heuristic approaches are not even close to optimality
 - used in custom chip design

- One-hot encoding
 - easy for small state machines
 - generates small equations with easy to estimate complexity
 - common in FPGAs and other programmable logic

- Output-based encoding
 - ad hoc - no tools
 - most common approach taken by human designers
 - yields very small circuits for most FSMs
Sequential logic optimization summary

- State minimization
 - straightforward in fully-specified machines
 - computationally intractable, in general (with don't cares)
- State assignment
 - many heuristics
 - best-of-10-random just as good or better for most machines
 - output encoding can be attractive (especially for PAL implementations)