
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 15:
Sequential Verilog

Last Lecture
Latches
Flip-flops

Today
Timing Methodology
Sequential Verilog

Administrivia
Turn in HW#5

Lab #6 on the web

Quiz #2 Quiz #2

Timing methodologies
Rules for interconnecting components and clocks

guarantee proper operation of system when strictly
followed

Approach depends on building blocks used for memory
elements

we'll focus on systems with edge-triggered flip-flops
found in programmable logic devices

many custom integrated circuits focus on level-
sensitive latches

Basic rules for correct timing:
(1) correct inputs, with respect to time, are provided to
the flip-flops
(2) no flip-flop changes state more than once per
clocking event

there is a timing "window"
around the clocking event
during which the input must
remain stable and unchanged
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing methodologies (cont’d)
Definition of terms

clock: periodic event, causes state of memory element to change
can be rising edge or falling edge or high level or low level

setup time: minimum time before the clocking event by which the
input must be stable (Tsu)

hold time: minimum time after the clocking event until which the
input must remain stable (Th)

behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
G

CLK

transparent
(level-sensitive)

latch

D

CLK

Qedge

Qlatch

Comparison of latches and
flip-flops

Type When inputs are sampled When output is valid

unclocked always propagation delay from input change
latch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge (whichever is later)

edge of clock)

master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clock

edge of clock)

negative clock hi-to-lo transition propagation delay from falling edge
edge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)

Comparison of latches and
flip-flops (cont’d)

all measurements are made from the clocking event (the rising edge of the clock)

Typical timing specifications
Positive edge-triggered D flip-flop

setup and hold times
minimum clock width
propagation delays (low to high, high to low, max and
typical)

D

Clk

Q

T su
1.8
ns

T h
0.5
ns

T w
3.3
ns

T pd
3.6 ns
1.1 ns

T su
1.8
ns

T h
0.5
ns

T pd
3.6 ns
1.1 ns

T w
3.3
ns

IN

Q0

Q1

CLK

100

Cascading edge-triggered flip-flops
Shift register

new value goes into first stage
while previous value of first stage goes into second
stage
consider setup/hold/propagation delays (prop must be
> hold)

CLK

IN
Q0 Q1

D Q D Q OUT

timing constraints
guarantee proper

operation of
cascaded components

assumes infinitely fast
distribution of the clock

Cascading edge-triggered
flip-flops (cont’d)

Why this works
propagation delays exceed hold times
clock width constraint exceeds setup time
this guarantees following stage will latch current value
before it changes to new value

Tsu
1.8ns

Tp
1.1-3.6ns

Th
0.5ns

In

Q0

Q1

CLK

Tsu
1.8ns

Tp
1.1-3.6ns

Th
0.5ns

Variables
wire

Connects components together
reg

Saves a value
Part of a behavioral description

Does NOT necessarily become a register when you
synthesize

May become a wire
The rule

Declare a variable as reg if it is a target of an assignment
statement

Continuous assign doesn’t count

Sequential Verilog
Sequential circuits: Registers & combinational logic

Use positive edge-triggered registers
Avoid latches and negative edge-triggered registers

Register is triggered by “posedge clk”

module register(Q, D, clock);
input D, clock;
output Q;
reg Q;
always @(posedge clock) begin

Q = D;
end

endmodule

Example: A D flip-flop

A real register. Holds Q
between clock edges

always block
A procedure that describes a circuit’s function

Can contain multiple statements
Can contain if, for, while, case
Triggers at the specified conditions
begin/end groups statements within always block

module register(Q, D, clock);
input D, clock;
output Q;
reg Q;
always @(posedge clock) begin

Q = D;
end

endmodule

module and_gate(out, in1, in2);
input in1, in2;
output out;
reg out;

always @(in1 or in2) begin
out = in1 & in2;

end
endmodule

Not a real register!!
Holds assignment in
always block

specifies when block is executed
i.e. triggered by changes in in1 or in2

always example

The compiler will not synthesize
this code to a register, because
out changes whenever in1 or in2
change. Can instead simply write
wire out, in1, in2;
and (out, in1, in2);

module and_gate (out, in1, in2);
input in1, in2;
output out;
reg out;
always @(in1) begin

out = in1 & in2;
end

endmodule

Incomplete trigger or
incomplete assignment

What if you omit an input trigger (e.g. in2)
Compiler will insert a register to hold the state
Becomes a sequential circuit — NOT what you want

2 rules:
1) Include all inputs in the trigger list
2) Use complete assignments
⇒ Every path must lead to an assignment for out
⇒ Otherwise out needs a state element

A real register!! Holds out
because in2 isn’t specified
in always trigger

module and_gate (out, in1, in2);
input in1, in2;
output out;
assign out = myfunction(in1, in2);
function myfunction;
input in1, in2;
begin

myfunction = in1 & in2;
end

endfunction
endmodule

Benefits:
Functions force a result
⇒ Compiler will fail if function

does not generate a result
⇒ If you build a function wrong

the circuit will not synthesize.
If you build an always block
wrong you get a register

Another way: Use functions
Functions for combinational logic

Functions can’t have state // Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel == 2’b00) Y = A;
else if (sel == 2’b01) Y = B;
else if (sel == 2’b10) Y = C;
else if (sel == 2’b11) Y = D;

endmodule

if
Same as C if statement

⇒ Single if statements synthesize to multiplexers
⇒ Nested if /else statements usually synthesize to logic

// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment

always @(sel or A or B or C or D)
if (sel[0] == 0)

if (sel[1] == 0) Y = A;
else Y = B;

else
if (sel[1] == 0) Y = C;
else Y = D;

endmodule

if (another way)
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
reg Y; // target of assignment
always @(sel or A or B or C or D)
case (sel)
2’b00: Y = A;
2’b01: Y = B;
2’b10: Y = C;
2’b11: Y = D;

endcase
endmodule

case

case executes sequentially
⇒ First match executes
⇒ Don’t need to break out of case

case statements synthesize to muxes

case (another way)
// Simple 4-1 mux
module mux4 (sel, A, B, C, D, Y);
input [1:0] sel; // 2-bit control signal
input A, B, C, D;
output Y;
assign out = mymux(sel, A, B, C, D);
function mymux;

input [1:0] sel, A, B, C, D;
begin

case (sel)
2’b00: mymux = A;
2’b01: mymux = B;
2’b10: mymux = C;
2’b11: mymux = D;

endcase
end

endfunction
endmodule

Note: You can define a function in a file
Then include it into your Verilog module

// Simple binary encoder (input is 1-hot)
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment
always @(A)

case (A)
8’b00000001: Y = 0;
8’b00000010: Y = 1;
8’b00000100: Y = 2;
8’b00001000: Y = 3;
8’b00010000: Y = 4;
8’b00100000: Y = 5;
8’b01000000: Y = 6;
8’b10000000: Y = 7;
default: Y = 3’bx; // Don’t care about other cases

endcase
endmodule

default case

If you omit the default, the compiler will
create a latch for Y
⇒ Either list all 256 cases
⇒ Or use a function (compiler will

warn you of missing cases)

// Priority encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment
always @(A)

case (1’b1)
A[0]: Y = 0;
A[1]: Y = 1;
A[2]: Y = 2;
A[3]: Y = 3;
A[4]: Y = 4;
A[5]: Y = 5;
A[6]: Y = 6;
A[7]: Y = 7;
default: Y = 3’bx; // Don’t care when input is all 0’s

endcase
endmodule

case executes sequentially

Case statements execute sequentially
⇒ Take the first alternative that matches

// simple encoder
module encode (A, Y);
input [7:0] A; // 8-bit input vector
output [2:0] Y; // 3-bit encoded output
reg [2:0] Y; // target of assignment
integer i; // Temporary variables for program
reg [7:0] test;
always @(A) begin

test = 8b’00000001;
Y = 3’bx;
for (i = 0; i < 8; i = i + 1) begin

if (A == test) Y = i;
test = test << 1; // Shift left, pad with 0s

end
end

endmodule

for

for statements synthesize as
cascaded combinational logic

⇒ Verilog unrolls the loop

Verilog while/repeat/forever
while (expression) statement

execute statement while expression is true
repeat (expression) statement

execute statement a fixed number of times
forever statement

execute statement forever

always @(posedge CLK)
begin

temp = B;
B = A;
A = temp;

end

always @(posedge CLK)
begin

A <= B;
B <= A;

end

Blocking and non-blocking
assignments

Blocking assignments (Q = A)
Variable is assigned immediately
New value is used by subsequent statements

Non-blocking assignments (Q <= A)
Variable is assigned after all scheduled statements
are executed
Value to be assigned is computed but saved for later

Example: Swap

reg B, C, D;
always @(posedge clk)

begin
B <= A;
C <= B;
D <= C;

end

reg B, C, D;
always @(posedge clk)

begin
B = A;
C = B;
D = C;

end

Blocking and non-blocking
assignments

always @(posedge CLK)
begin

A = B;
end

always @(posedge CLK)
begin

B = A;
end

always @(posedge CLK)
begin

A <= B;
end

always @(posedge CLK)
begin

B <= A;
end

Swap
The following code executes incorrectly

One block executes first
Loses previous value of variable

Non-blocking assignment fixes this
Both blocks are scheduled by posedge CLK

Parallel versus serial execution
assign statements are implicitly parallel

“=” means continuous assignment
Example

assign E = A & D;
assign A = B & C;

A and E change if B changes
always blocks execute in parallel

always @(posedge clock)
Procedural block internals not necessarily parallel

“=” is a blocking assignment (sequential)
“<=” is a nonblocking assignment (parallel)
Examples of procedures: always, function, etc.

B
C

D

A

E

wire [3:0] x, y, a, b, c, d;
assign apr = ^a;
assign y = a & ~b;
assign x = (a == b) ?

a + c : d + a;

x

+

+

==

a

b

c

d x+

==

a

b

c
d

Synthesis examples

