
CSE 370 Spring 2006
Introduction to Digital Design

Lecture 14: Latches and Flip-Flops

Last Lecture
Intro to Sequential Logic

Today
Latches
Flip-flops
Timing Methodology

Administrivia

C1 C2 C3

comparator

value

equal

multiplexer

reset

open/closed

new equal

mux
control

clock

comb. logic

state

Sequential circuits
Circuits with feedback

outputs = f(inputs, past inputs, past outputs)
basis for building "memory" into logic circuits
door combination lock is an example of a sequential
circuit

state is memory
state is an "output" and an "input" to combinational
logic
combination storage elements are also memory

X1
X2
•
•
•

Xn

switching
network

Z1
Z2
•
•
•

Zn

Circuits with feedback

How to control feedback?
what stops values from cycling around endlessly

"remember"

"load"
"data" "stored value"

"0"

"1"

"stored value"

Simplest circuits with feedback

Two inverters form a static memory cell
will hold value as long as it has power applied

How to get a new value into the memory cell?
selectively break feedback path
load new value into cell

R

S

Q

Q'

R
S

Q

Memory with cross-coupled
gates

Cross-coupled NOR gates
similar to inverter pair, with capability to force output
to 0 (reset=1) or 1 (set=1)

R'
S'

Q
Q

Q'

S'

R'

Memory with cross-coupled
gates

Cross-coupled NAND gates
similar to inverter pair, with capability to force output
to 0 (reset=0) or 1 (set=0)

Reset Hold Set SetReset Race

R

S

Q

\Q

100

Timing behavior

R

S

Q

Q'

S R Q
0 0 hold
0 1 0
1 0 1
1 1 unstable

State behavior or R-S latch

Truth table of R-S latch behavior

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

Q Q'
1 1

R

S

Q

Q'

Theoretical R-S latch behavior

State diagram
states: possible
values
transitions:
changes
based on inputs

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

Q Q'
1 1

SR=00
SR=11SR=00

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

SR=11 SR=11

SR=10SR=01

SR=01 SR=10

SR=11

possible oscillation
between states 00 and 11

R

S

Q

Q'

Observed R-S latch behavior
Very difficult to observe R-S latch in the 1-1 state

one of R or S usually changes first
Ambiguously returns to state 0-1 or 1-0

a so-called "race condition"
or non-deterministic transition

SR=00SR=00

Q Q'
0 1

Q Q'
1 0

Q Q'
0 0

SR=10

SR=01
SR=00
SR=10

SR=00
SR=01

SR=11 SR=11

SR=01 SR=10

SR=11

R

S

Q

Q'

Q(t+Δ)

R
S

Q(t)

S R Q(t) Q(t+Δ)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

hold

reset

set

not allowed characteristic equation
Q(t+Δ) = S + R’ Q(t)

R-S latch analysis
Break feedback path

R

S

Q

Q'

0 0

1 0

X 1

X 1Q(t)

R

S

R’

S’ Q

Q'

Activity: R-S latch using
NAND gates

characteristic equation
Q(t+Δ) = S + R’ Q(t)

R’
S’

Q(t)

0 0

1 0

X 1

X 1Q(t)

R

S

S R S’ R’ Q(t) Q(t+Δ)
0 0 1 1 0 0
0 0 1 1 1 1
0 1 1 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1
1 0 0 1 1 1
1 1 0 0 0 X
1 1 0 0 1 X

hold

reset

set

not allowed

enable'

S'
Q'

Q
R' R

S

Gated R-S latch
Control when R and S
inputs matter

otherwise, the
slightest glitch on R
or S while enable is
low could cause
change in value
stored Set Reset

S'
R'
enable'
Q
Q'

100

period

duty cycle (in this case, 50%)

Clocks
Used to keep time

wait long enough for inputs (R' and S') to settle
then allow to have effect on value stored

Clocks are regular periodic signals
period (time between ticks)
duty-cycle (time clock is high between ticks -
expressed as % of period)

clock’

R’ and S’
changing stable changing stablestable

Clocks (cont’d)
Controlling an R-S latch with a clock

can't let R and S change while clock is active (allowing
R and S to pass)
only have half of clock period for signal changes to
propagate
signals must be stable for the other half of clock period

clock’

S’
Q’

Q
R’ R

S

clock

R

S Q

Q’ R

S Q

Q’R

S

Cascading latches
Connect output of one latch to input of another
How to stop changes from racing through chain?

need to be able to control flow of data from one latch
to the next
move one latch per clock period
have to worry about logic between latches (arrows)
that is too fast

Master-slave structure
Break flow by alternating clocks (like an air-lock)

use positive clock to latch inputs into one R-S latch
use negative clock to change outputs with another R-
S latch

View pair as one basic unit
master-slave flip-flop
twice as much logic
output changes a few gate delays after the falling
edge of clock but does not affect any cascaded flip-
flops master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’R

S

Set
1s

catch

S
R

CLK
P
P’
Q
Q’

Reset

Master
Outputs

Slave
Outputs

The 1s catching problem
In first R-S stage of master-slave FF

0-1-0 glitch on R or S while clock is high is "caught" by
master stage
leads to constraints on logic to be hazard-free

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’R

S

10 gates

D flip-flop
Make S and R complements of each other

eliminates 1s catching problem
can't just hold previous value
(must have new value ready every clock period)
value of D just before clock goes low is what is stored in
flip-flop
can make R-S flip-flop by adding logic to make D = S +
R’ Q

D Q

Q’

master stage slave stage

P

P’

CLK

R

S Q

Q’ R

S Q

Q’

Q

D

Clk=1

R

S

0

D’

0

D’ D

Q’

negative edge-triggered D
flip-flop (D-FF)

4-5 gate delays

must respect setup and hold time
constraints to successfully

capture input

characteristic equation
Q(t+1) = D

holds D’ when
clock goes low

holds D when
clock goes low

Edge-triggered flip-flops
More efficient solution: only 6 gates

sensitive to inputs only near edge of clock signal (not
while high)

Q

D

Clk=0

R

S

D

D’

D’

D’ D

when clock goes high-to-low
data is latched

when clock is low
data is held

Edge-triggered flip-flops (cont’d)

Step-by-step analysis

Q

new D

Clk=0

R

S

D

D’

D’

D’ D

new D ≠ old D

positive edge-triggered FF

negative edge-triggered FF

D
CLK

Qpos
Qpos’
Qneg
Qneg’

100

Edge-triggered flip-flops (cont’d)
Positive edge-triggered

inputs sampled on rising edge; outputs change after
rising edge

Negative edge-triggered flip-flops
inputs sampled on falling edge; outputs change after
falling edge

Timing methodologies
Rules for interconnecting components and clocks

guarantee proper operation of system when strictly
followed

Approach depends on building blocks used for memory
elements

we'll focus on systems with edge-triggered flip-flops
found in programmable logic devices

many custom integrated circuits focus on level-
sensitive latches

Basic rules for correct timing:
(1) correct inputs, with respect to time, are provided to
the flip-flops
(2) no flip-flop changes state more than once per
clocking event

there is a timing "window"
around the clocking event
during which the input must
remain stable and unchanged
in order to be recognized

clock

data
changingstable

input

clock

Tsu Th

clock

data
D Q D Q

Timing methodologies (cont’d)
Definition of terms

clock: periodic event, causes state of memory element to change
can be rising edge or falling edge or high level or low level

setup time: minimum time before the clocking event by which the
input must be stable (Tsu)

hold time: minimum time after the clocking event until which the
input must remain stable (Th)

behavior is the same unless input changes
while the clock is high

D Q

CLK

positive
edge-triggered

flip-flop

D Q
G

CLK

transparent
(level-sensitive)

latch

D

CLK

Qedge

Qlatch

Comparison of latches and
flip-flops

Type When inputs are sampled When output is valid

unclocked always propagation delay from input change
latch

level-sensitive clock high propagation delay from input change
latch (Tsu/Th around falling or clock edge (whichever is later)

edge of clock)

master-slave clock high propagation delay from falling edge
flip-flop (Tsu/Th around falling of clock

edge of clock)

negative clock hi-to-lo transition propagation delay from falling edge
edge-triggered (Tsu/Th around falling of clock
flip-flop edge of clock)

Comparison of latches and
flip-flops (cont’d)

all measurements are made from the clocking event (the rising edge of the clock)

Typical timing specifications
Positive edge-triggered D flip-flop

setup and hold times
minimum clock width
propagation delays (low to high, high to low, max and
typical)

D

Clk

Q

T su
1.8
ns

T h
0.5
ns

T w
3.3
ns

T pd
3.6 ns
1.1 ns

T su
1.8
ns

T h
0.5
ns

T pd
3.6 ns
1.1 ns

T w
3.3
ns

IN

Q0

Q1

CLK

100

Cascading edge-triggered flip-flops
Shift register

new value goes into first stage
while previous value of first stage goes into second
stage
consider setup/hold/propagation delays (prop must be
> hold)

CLK

IN
Q0 Q1

D Q D Q OUT

timing constraints
guarantee proper

operation of
cascaded components

assumes infinitely fast
distribution of the clock

Cascading edge-triggered
flip-flops (cont’d)

Why this works
propagation delays exceed hold times
clock width constraint exceeds setup time
this guarantees following stage will latch current value
before it changes to new value

Tsu
1.8ns

Tp
1.1-3.6ns

Th
0.5ns

In

Q0

Q1

CLK

Tsu
1.8ns

Tp
1.1-3.6ns

Th
0.5ns

