CSE 370 Spring 2006
Introduction to Digital Design

Lecture 13: Introduction to
Sequential Logic

- ; _ Last Lecture
* TR ddd B Adders
'k 't"'l.'.f. ‘
Today
B Sequential Logic

FE \II’()Ix\R\
IC DESIGN

ON
OG

Administrivia

BQuiz #2

Sequential versus
combinational

A —

. .C

B —

Iclock

Apply fixed inputs A, B
Wait for clock edge
Observe C
Wait for another clock edge
Observe C again

Combinational: C will stay the same
Sequential: C may be different

Sequential logic

B Two types
E Synchronous = clocked
B Asynchronous = self-timed
m Has state
B State = memory
m Employs feedback
m Assumes steady-state signals
F Signals are valid after they have settled

E State elements hold their settled output
values

Sequential versus
combinational (again)

m Combinational systems are memoryless
B Outputs depend only on the present inputs

—

Inputs ———* System Outputs

.

3 3

L L
—] ——>

B Sequential systems have memory
E Outputs depend on the present and the previous inputs

Inputs

System Outputs

3
3
°
|

—
L
Ld
,‘_.

Feedback

Synchronous sequential systems

® Memory holds a system'’s state
B Changes in state occur at specific times
E A periodic signal times or clocks the state changes
E The clock period is the time between state changes

A — . c

B —

State changes occur

I clock at rising edge of clock
pulsewidth duty cycle = pulsewidth/period
f— (here it is 50%6)

clock L[LT 1T 1_

period

Steady-state abstraction

m Outputs retain their settled values

B The clock period must be long enough for all voltages
to settle to a steady state before the next state
change

A—s .

B —

T clock Clock hides transient
behavior

clock [_[LI 1T 1_

c W

Settled value

Example: A sequential system

m Door combination lock
E Enter 3 numbers in sequence and the door opens
E If there is an error the lock must be reset
E After the door opens the lock must be reset
F Inputs: Sequence of numbers, reset
F Outputs: Door open/close
B Memory: Must remember the combination

Understand the problem

m Consider I/0 and unknowns
E How many bits per input?
E How many inputs in sequence?
B How do we know a new input is entered?
B How do we represent the system states?

new value reset

LI

clock —{>

|

open/closed

Implement using sequential logic

m Behavior
B Clock tells us when to look at inputs
E After inputs have settled
B Sequential: Enter sequence of numbers
E Sequential: Remember if error occurred
m Need a finite-state diagram new value reset
B Assume synchronous inputs l l l l l l
k State sequence
F Enter 3 numbers serially clock —{>
F Remember if error occurred l
E All states have outputs open/closed
F Lock open or closed

Finite-state diagram

m States: 5 m Inputs: reset, new, results
E Each state has outputs of comparisons
m Outputs: open/closed B Assume synchronous
inputs
We use state diagrams to
represent sequential logic

System transitions between
finite numbers of states

Cl!= value
& new

S2 S3 QOPEN
closed closed open
Cl== value C2== value C
& new & new & new

not new not new not new

Separate data path and control

m Data path m COﬂ'FrC_Jl |
F Stores combination B Finite state-machine
controller

B Compares inputs with

combination B Control for data path

B State changes clocked

c1] [c2] [c3]
4 41 4

multi
4

comparator

plexer

controller

clock

open/closed

Refine diagram; generate
state table 0.

m Refine state diagram to
include internal structure n?; equal

S1
closed

S
U & new U & new U & new U

not new not new not new

next
reset _new equal state| state _mux __ open/closed

m Generate 1 - - - S1 C1 closed
state 0 0 - S1 S1 C1 closed

0 1 0 S1 ERR - closed

table 0 1 1 S1 | s2 c2 closed

1

[y

S3 OPEN - open

;o

Encode state table

B State can be: S1, S2, S3, OPEN, or ERR

E Need at least 3 bits to encode: 000, 001, 010, 011,
100

E Can use 5 bits: 00001, 00010, 00100, 01000, 10000
E Choose 4 bits: 0001, 0010, 0100, 1000, 0000
m Output to mux can be: C1, C2, or C3
E Need 2 or 3 bits to encode
E Choose 3 bits: 001, 010, 100
m Output open/closed can be: Open or closed
F Need 1 or 2 bits to encode
B Choose 1 bit: 1, 0

Encode state table (con’t)

m Good encoding choice!
E Mux control is identical to last 3 state bits
B Openl/closed is identical to first state bit

E Output encoding = the outputs and state bits are the
same

reset new equal state sr':gzc(é mux__open/closed
1 - - - 0001 001 0
0 0 — 0001| 0001 o001 0
0 1 0 0001| 0000 - 0
0 1 1 0001| 0010 010 0
0 1 1 0100(1000 - 1

Implementing the controller

® We will learn how to special circuit element,
called a register, for

design the controller storing inputs when
given the encoded told to by the clock
state-transition table

new equal reset

mux

<W_|_Comb. Ioic/
—clock

open/closed

Designing the datapath

® Four 3:1 multiplexers
E2-input ANDs and 3-input ~ Valu& CL G2 C3

OR ! ! c?#t)r(ol
m Four single-bit comparators Q
B 2-input XNORs |
m 4-input AND

1

c1 c2 c3 =
mux
control
m

valie—:—{ comparar }—geoa—
comparator equal equal

Where did we use memory?

® Memory: Stored combination, state (errors or successes
in past inputs)

new equal reset

e |]|

multiplexer MUX controller
control lock
e
comparator e
equal open/closed

Where did we use feedback?

m Feedback: Comparator output ("equal” signal)

new equal reset

value l l l
(C2] [c3]
mux
contol | controller
Flock
equal open/closed

Where did we use clock?

m Clock synchronizes the inputs
E Accept inputs when clock goes high
m Controller is clocked

E Mux-control and open/closed signals change on the

clock edge
new equal reset

LT]

control controller

l

equal open/closed

l—-clock

comparator

Then next 5 weeks...

m We learn the details
B Latches, flip-flops, registers
E Shift registers, counters
B State machines
E Timing and timing diagrams
B Synchronous and asynchronous inputs

I Metastability

E Clock skew
E Moore and Mealy machines
E One-hot encoding
® More...

