
Homework 6 Solutions

1. Construct a 4-bit ripple-carry adder with four full-adder blocks using Aldec

ActiveHDL. First construct - out of basic gates from the lib370 library - a
single-bit full-adder block to reuse. Verify your design using simulation, turn
in the schematic and timing waveforms showing what happens when you
have "1111" and "0000" as the numbers to be added and you change the
"0000" to "0001". How long does it take the sum to get to the right value?
Repeat this experiment starting with "1010" and "0000" and changing the
"0000" to "0101". Explain the differences between the two cases.

In the first case, from F + 0 � F + 1, the Sum is calculated in 9 ns and the Cout is
calculated in 7 ns. For the second case, from A + 0 � A + 5, the Sum is calculated in
2 ns and Cout in 0 ns (doesn’t change). The difference is that the first case suffers
from a ripple-carry effect, where the first carry has to propagate all the way to the last
bit. The second case does not have a carry and finishes much faster.

2. Repeat the previous problem but now construct a 4-bit carry-lookahead

instead. Use the same full-adder module as the previous problem. Repeat the
two simulations. How much faster is the carry-lookahead adder in both
cases? Explain the differences with the result of the previous problem. How
do your circuits from this problem and the previous one compare in the total
number of gates they use (remember to consider gates in all sub-blocks)?

NOTE: This solution uses a 5-input OR-gate. Since this is not present in the
lib370 package, we accepted cascading gates to make this 5-input work.

Now we take the one-bit full adders and cascade them:

Finally we hook the circuit together:

Timing waveforms:

In the first case, where (F + 0 � F + 1), the sum is calculated in 4 ns and Cout is
calculated in 3 ns. The second case (A +0 � A + 5) calculates sum in 2 ns. Again,
there is no carry in the second case. The carry-lookahead adder is much faster in the
first case because we do not have to wait for the carry-propagation delay. Instead we
can use the P and G functions to calculate carries in parallel. Note that the
performance time is exactly the same in the second case because this does not require
carries! Problem one required 48 gates, while problem two requires approximately
64 gates.

3. CLD-II, Chapter 5, problem 5.4, parts a and b (use a 9-bit binary

representation for the output).

The LEAP_YEAR input is dealt with in part A of the problem, where we
conditionally add

4. CLD-II, Chapter 5, problem 5.9, parts a and b.

(b) Analyze the worst-case gate delays encountered in 32- and 64-bit addition.
Use the simple delay models as in Section 5.6.

32-bit adder time analysis (see figure below):

� Worst case gate delay is 11
o To understand how we ended up with 11, follow the gate delays as we

use the 32-bit adder to add 0xFFFFFFFFF + 0x00000001. The first
16-bit adder block has a gate delay of 8 (as we found in previous
analysis). We know that P0 and G0 have delays of 3 and 5
respectively and C1 is simply (C0 * P0 + G0), so C1 is dependent on
the G0 (5 gate delays) plus an OR gate. This is a total of 6 gate delays
for C1. Once we have C1, the second 16-bit adder module computes
the sum in 5 more gate delays. This is a total of 11 gate delays. The
second 16-bit adder module overlaps its propagate and generate
computations with the carry calculations in the external carry-
lookahead unit. (see pages 243 and 244 for more information).

o The Cout value is valid at time 7

64-bit adder time analysis (see figures below):
� Worse case gate delay is 12
� Cout is valid at time 7

5. CLD-II, Chapter 5, problem 5.10.

Consider a 16-bit adder implemented with the carry-select technique described
in Section 5.6. The adder is implemented with three 8-bit carry-lookahead
adders and eight 2:1 multiplexers. Estimate the gate delay and compare it
against a conventional 16-bit ripple adder and a 16-bit carry-lookahead adder.

