Homework 6 Solutions

1. Construct a 4-bit ripple-carry adder with four full-adder blocksusing Aldec
ActiveHDL. First construct - out of basic gates from thelib370 library - a
single-bit full-adder block to reuse. Verify your design using ssmulation, turn
in the schematic and timing wavefor ms showing what happens when you
have" 1111" and " 0000" asthe numbersto be added and you changethe
"0000" to"0001". How long doesit take the sum to get to theright value?
Repeat this experiment starting with " 1010" and " 0000" and changing the
"0000" to"0101". Explain the differences between the two cases.

—_

D m
%
A couf2Uk

A3
,?». Coul B[3 5 Sum Sum[3
.—_Cln ~{Cin
B Full AdderGates
l_—*—
Cin } U2 J

-Eg]—ma Cout
B[Z 5 Sum Sum|g
A iy Cin
. -
TS, By) FullAdderGates
. Cin U3 J
A inv .ﬂl]_,_ A Cout
" 5 BI1L, |, surh: S
|, +
.Cin D‘ Cin iny) Cin
Sum
FullAdderGates
. A
. B inv) U4 J
. Cin inv AJ0) . cout
B_[} 5 Sum Sum[0
" A -—hCm Cin
. B)
Cin j FullAdderGates

Figure 1 (left) Full Adder (right) 4-bit Ripple-Carry Adder.

gesn | IOOOC00O0EE |

quxe 3 With Cﬂte Delaya Enabled.

In the first case (for F + 0 -= F + 1). the Sum is calculated in 9 ns and the Cout 1s
calculated in 7 ns. In the second case (for A + 0 -= A + 3), the Sum is caleulated in 2 ns
The first case suffers from a much worse delay because of the carry-ripple effect; notice
how the cary has to be propagated up the chain of full adders. In contrast, the second
case requires no carry’s and therefore computes much faster.

In the first case, from F +© F + 1, the Sum is calculated in 9 ns and the @out
calculated in 7 ns. For the second case, fromQA>+A + 5, the Sum is calculated in
2 ns and Cout in 0 ns (doesn’'t change). The diffee is that the first case suffers
from a ripple-carry effect, where the first cargsito propagate all the way to the last
bit. The second case does not have a carry aistidisn much faster.

2. Repeat the previous problem but now construct a 4-bit carry-lookahead
instead. Usethe same full-adder module asthe previous problem. Repeat the
two simulations. How much faster isthe carry-lookahead adder in both
cases? Explain the differences with theresult of the previous problem. How
do your circuitsfrom this problem and the previous one comparein the total
number of gatesthey use (remember to consider gatesin all sub-blocks)?

in Coutl]

Dgo_u‘tuj

\

: D—Bﬁh‘j

Coutl2]

EET‘;
. BEEE

]
=

%ﬁgifﬁr
B EEE BBER
| |
i

1o %
L]

o

kﬁ
%)

=]

5

L]

@
o

BE EEE BERI

B G

Al \ _— .
CE:E\ JD L)D ;:
\,
sy

NOTE: Thissolution usesa 5-input OR-gate. Sincethisisnot present in the
lib370 package, we accepted cascading gatesto make this 5-input work.

Now we take the one-bit full adders and cascad&athe

lockG

U4

LI A o2

B3l | o} P13

inf3], |, o}, 513
add_1bit_pg
U3

Sa L/ N Rt

B[Z] g A !

inf2 = & S[2]
add_1bit_pg
U2

L0, ol 2L

B[1] g = F‘|1i

Gin[], | . o,
add_1bit_pg
U1

e L N

EiEﬂ 5 5 PIa]

Cin[0 & 3 S|[}i
add_1bit_pg

Finally we hook the circuit together:

U1

U2 = e Blockoh—CS
a0 ABD) GED) Gi20) BloaPl—F

I—Bw—ﬂ{a:t}? P{30) PR Codior

Cin(3:0) S(30) L
add_4bit_cascade e
Cout, CamyOut]{3:0]
Timing waveforms:
Na:el:m Walue E;Sti... e W 200 0 30 . 4@
- e
& A[3)
bA[Z]
H;ﬁj 1
*ﬂ.f.ﬂ] o T
=T 5 For... {0 b o s
B E[g] ----- |] ---
= 5[2] : e IR
- E[1] - — i
b E[D] : e, A
i e {@(}(—lF jﬁ{}ﬁ I—imh e
® Cout 0 A a—

In the first case, where (F +® F + 1), the sum is calculated in 4 ns and Cout is
calculated in 3 ns. The second case (A>+@ + 5) calculates sum in 2 ns. Again,
there is no carry in the second case. The caokdead adder is much faster in the
first case because we do not have to wait for #neygropagation delay. Instead we
can use the P and G functions to calculate carriparallel. Note that the
performance time is exactly the same in the secasd because this does not require
carries! Problem one required 48 gates, while [prakiwo requires approximately

64 gates.

3. CLD-Il, Chapter 5, problem 5.4, partsa and b (use a 9-bit binary
representation for the output).

Module for Problem 5.4a
‘timescale lps / lps

module ProblemS_4a (Leap¥Year, Month, Day0ffset);

wire ear ;
input 1 Month ;
wire Month ;

outpué :E;C] Day0ffs=st ;
reg [B:0] DayOffset

//Couldn't get this intialization toc work

//integer DAYCOUNT [11:0] = {1'd0,5'd31,&"'d58,7'd90,
/f30, we'll do it by hand at the beggining of our _n_u_al block
integer DAYCOUNT [11

8'd181,8"d212,8"d4243,9'd273,9"'d304,59"'d334};

initial begin
DAYCQUNT [0]
DAYCOQUNT[1]
DAYCOQUNT [2]
DAYCOUNT [3]
DAYCOUNT [4]
DAYCOUNT[5]
DAYCOUNT [6]
DAYCOUNT[7]
DAYCOUNT [B]

DAY LﬂI'"

always@ (Leap¥sar or Month)

begin
if (Month : "k0001 && Month <= 4°' jD 1a)
D ffset = DRAYCOQUNT [M I 1:
else if(h > 4'p0010 && Men 4
DayOffset = DRAYCOUNT [Month-1] + LeapYear;
glge
Day0ffset = 9'bl11111111;
end
endmcdule

Module for Problem 5.4b
‘timescale lps / lps

module Problems 4b (Day0ffset, DayOfMonth, DayOfYear):

[4:0] DayofMonth;
wire [4:0] DayOifMonth;

cutput [8:0] DayOf¥ear;
wire [8:0] DayDfY¥ear:

assign DayOfYear = Daydffset 4 DayOfMonth:

endmodule

The LEAP_YEAR input is dealt with in part A of tipegoblem, where we
conditionally add

4. CLD-II, Chapter 5, problem 5.9, partsaand b.

(a) Draw block diagrams for the 32- and 64-bit adders., showing all interconnections.

_ Cin [~ Could] _
. D>
in =
o o 2
G f_@]'_ ors Bloc
Fo. gl
ol 201
g, -
a1, .) Coufd] GIO
Sl ol
= Fa 731
512, Sl
i |)— 22— o
Y I N o PN € [
F[2 G[Z
hal = 20—
gl |
£ | G

Figure 10 CLA4

- Doy

D G

Figure 11 add 1bit pg

U

e KellN f. Blokal— =
3
0D : A(30) GED) G(30) BlokP————=
A(30) C-—BIB—L:];EB{M) P{310) p— P{310) Couti:0 = =£5(3:0)
B(3:0)D=- Mmm:ﬂ} S(310) : CanyOutf4] Cout
Cinl — add_4bit_cascade clas _»p
G
Qamiguqa:[]
CanyOout[4:0]
Camyoutl4

Figure 12 add4bit cla

U4

A3 |, LG

=B S NLE)

in3] | _ 21,503
add _1hit_pg
U3

L EII s}-S4

=041, I8 N N i}

Cinf2] | .|, S
add_1hit_pg
U2

AT |, -1, GLl]

BI1L, |, .|, Pl

inf1] | _ <L, S0
add_1hit_pg

U
[N eI
BIO]

0l e
in[0 - - S[0
add _1hit_pg

Figure 13 add 4bit cascade

el 3:_G 424) ::aux—«-—-N““_'L
—[—]-BCB_'G B2 s.;a::l‘.'—u-s ?D[]]
in G
B——+Cin g——=
POl =£5(15:0)
Fl——m
— > Pout
A(15:0) B Gout
B(15:0)D~— add4bit cla ,
_ out Co
Cin=— U2
Us
&?_4 LA 24) ::aut—sLl_‘L- _
M'E[ﬂ-ﬂ] s.;a::'*.--—sju]- -Cl—r_.l'—l:n EbdtG"Ll
outi],, aph—Cll, M-G.:am Eme—-P‘j“‘—_-
h—Fllg el te 20 Cous: 0 femaall] g
clad
add4bit cla
U3
Al118 A N._JL.L

wmaﬂ] s.;aﬂtm
Goutl2l | o RE
|, P21

P

add4bit_cla

Al1a12 430) cou NULL
} arqe-
Bl15:12 B0) SED) S[i5.12
Cout[3 - a5 3

FH———=

add4bit_cla

Figure 14 16-bit carry-lookahead adder

(b) Analyze the wor st-case gate delays encountered in 32- and 64-bit addition.
Use the ssmple delay modelsasin Section 5.6.

32-bit adder time analysis (see figure below):

= Worst case gate delay is 11

o To understand how we ended up with 11, follow thteglelays as we
use the 32-bit adder to add OXxFFFFFFFFF + 0x000DO0We first
16-bit adder block has a gate delay of 8 (as wadan previous
analysis). We know that PO and GO have delaysasfd35
respectively and C1 is simply (CO * PO + GO0), soi€dependent on
the GO (5 gate delays) plus an OR gate. Thigesahof 6 gate delays
for C1. Once we have C1, the second 16-bit addetlute computes
the sum in 5 more gate delays. This is a totdllofate delays. The
second 16-bit adder module overlaps its propagateganerate
computations with the carry calculations in thesexal carry-
lookahead unit. (see pages 243 and 244 for méwenation).

0 The Cout value is valid at time 7

64-bit adder time analysis (see figures below):
= Worse case gate delay is 12
= Coutis valid at time 7

M ame l"-.I'EJLE EI...l |-5-|-1!:|-l-'ﬁ-n-E‘D-n-Zﬁ-|-3.D!:!15-|-4
A FFFFFFFF {couoa0o {FFFFFFFF ==
% = B 000000 {oonoa000 oo
=Cin 0 Fo...
S | |
= Pat 0]
3@ CSum Emnum}u _;:DG-::}O{nnunnmu mw
' Figure 17 Worst Case Delay in 32-bit CLA
M arme Wale =T T T A T R - IR B~ SRR I :4rs.F T
e, FFFFFFFFFF... HICON 00 OO0 FFFFFFFFFFFFFFFF —
Aeg oooonannoa. f Hocoecocancoecon 4 0000000000000001
= Chn o] Fo..
ECo i [1 |
B Gout i1 1] |
= Pout {0 [
e Sun (0000000000, W W woooonconoonoonoo K T S hooon0o00o000000

Figure 18 Worst Case Delay i 64-bat CLA

[=)
=

&
E Lookahead Garry Unit - Lookahead Camy Unit Lockahead Carmry Linit L] Lookahesd Carry Unit

y K.) i %\

Lockahaad Camry Unit

-

1]
23]
LoD
g
SiED
]
(]
[as)
fhial

)

‘)

Figure 19 64-bit CLA with Time Analysis®

*diagram from hitp -/ www-

5. CLD-II, Chapter 5, problem 5.10.

Consider a 16-bit adder implemented with the carry-select technique described
in Section 5.6. The adder isimplemented with three 8-bit carry-lookahead
addersand eight 2:1 multiplexers. Estimatethe gate delay and compare it
against a conventional 16-bit ripple adder and a 16-bit carry-lookahead adder.

Adders Gate Desc, Page #
Delays
16-bit carry-select] Aszsume the 8-bit adders are 8-bit carrv-lookahead Pz 243,
(varealistic adders then the critical path of our carry-select 245
implementation) structure is 4 gate delays plus 2 gate delays for the
multiplexer for a total of 6 gate delays. Wote that this
would require an incredibly high fan-in for the 8-bit cla
and, therefore, i3 impractical.
16-bit carry-select 9 Assume the 8-bit adders are made up of 2 4-bit camy-
lookahead adders then the critical path of our canry-
select structure 13 7 gate delays plus 2 gate delays for
the multiplexer for a total of 9 gate delays.
16-bit ripple-catry 32 See previous problems in this homework. Pz 240-
241
16-bit carry-lockahead | 8 See previous problems in this homework. Pz 243-
244
A[158 B[158) A7) B[T:0]
vy v, v 3
ebitcLa (e — B-hitCLA [e— G
T Sp[15:8] _,--'ﬂl?)|
A[15:8] B[15:8]

v |+

S-pLCLA ~

4 hJ
S[15:8] S[7:0]

Figure 20 16-bit Carry-Select Adder®

*diagram from himp:www-inst eecs barkelev sdn/~cs 1 50/5p00 homeworks T S-zoln pdf

