
Winter 2005 CSE370 - X - Sequential Logic Case Studies 1

Sequential logic examples

Basic design approach: a 4-step design process
Hardware description languages and finite state machines
Implementation examples and case studies

finite-string pattern recognizer
complex counter
traffic light controller
door combination lock

Winter 2005 CSE370 - X - Sequential Logic Case Studies 2

General FSM design procedure

(1) Determine inputs and outputs
(2) Determine possible states of machine

state minimization
(3) Encode states and outputs into a binary code

state assignment or state encoding
output encoding
possibly input encoding (if under our control)

(4) Realize logic to implement functions for states and outputs
combinational logic implementation and optimization
choices in steps 2 and 3 can have large effect on resulting logic

Winter 2005 CSE370 - X - Sequential Logic Case Studies 3

Finite string pattern recognizer (step 1)

Finite string pattern recognizer
one input (X) and one output (Z)
output is asserted whenever the input sequence …010… has
been
observed, as long as the sequence …100… has never been seen

Step 1: understanding the problem statement
sample input/output behavior:

X: 0 0 1 0 1 0 1 0 0 1 0 …
Z: 0 0 0 1 0 1 0 1 0 0 0 …

X: 1 1 0 1 1 0 1 0 0 1 0 …
Z: 0 0 0 0 0 0 0 1 0 0 0 …

Winter 2005 CSE370 - X - Sequential Logic Case Studies 4

Finite string pattern recognizer (step 2)

Step 2: draw state diagram
for the strings that must be recognized, i.e., 010 and 100
a Moore implementation

S1
[0]

S2
[0]

0

1

S3
[1]

0

S4
[0]

1

0 or 1

S5
[0]

0

0

S6
[0]

S0
[0]

reset

Winter 2005 CSE370 - X - Sequential Logic Case Studies 5

Finite string pattern recognizer (step 2, cont’d)

Exit conditions from state S3: have recognized …010
if next input is 0 then have …0100 = ...100 (state S6)
if next input is 1 then have …0101 = …01 (state S2)

Exit conditions from S1: recognizes
strings of form …0 (no 1 seen)

loop back to S1 if input is 0
Exit conditions from S4: recognizes
strings of form …1 (no 0 seen)

loop back to S4 if input is 1

1
...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

10

1

reset

0 or 1S3
[1]

0

S5
[0]

0

0

S6
[0]

...1...0
10

Winter 2005 CSE370 - X - Sequential Logic Case Studies 6

Finite string pattern recognizer (step 2, cont’d)

S2 and S5 still have incomplete transitions
S2 = …01; If next input is 1,
then string could be prefix of (01)1(00)
S4 handles just this case
S5 = …10; If next input is 1,
then string could be prefix of (10)1(0)
S2 handles just this case

Reuse states as much as possible
look for same meaning
state minimization leads to
smaller number of bits to
represent states

Once all states have a complete
set of transitions we have a
final state diagram

1
...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

10

1

reset

0 or 1S3
[1]

0

S5
[0]

0

0

S6
[0]

...1...0
10

...10

1

1

Winter 2005 CSE370 - X - Sequential Logic Case Studies 7

module string (clk, X, rst, Q0, Q1, Q2, Z);
input clk, X, rst;
output Q0, Q1, Q2, Z;

parameter S0 = [0,0,0]; //reset state
parameter S1 = [0,0,1]; //strings ending in ...0
parameter S2 = [0,1,0]; //strings ending in ...01
parameter S3 = [0,1,1]; //strings ending in ...010
parameter S4 = [1,0,0]; //strings ending in ...1
parameter S5 = [1,0,1]; //strings ending in ...10
parameter S6 = [1,1,0]; //strings ending in ...100

reg state[0:2];

assign Q0 = state[0];
assign Q1 = state[1];
assign Q2 = state[2];
assign Z = (state == S3);

always @(posedge clk) begin
if (rst) state = S0;
else

case (state)
S0: if (X) state = S4 else state = S1;
S1: if (X) state = S2 else state = S1;
S2: if (X) state = S4 else state = S3;
S3: if (X) state = S2 else state = S6;
S4: if (X) state = S4 else state = S5;
S5: if (X) state = S2 else state = S6;
S6: state = S6;
default: begin

$display (“invalid state reached”);
state = 3’bxxx;

end
endcase

end

endmodule

Finite string pattern recognizer (step 3)

Verilog description including state assignment (or state encoding)

Winter 2005 CSE370 - X - Sequential Logic Case Studies 8

Finite string pattern recognizer

Review of process
understanding problem

write down sample inputs and outputs to understand specification
derive a state diagram

write down sequences of states and transitions for sequences to be recognized
minimize number of states

add missing transitions; reuse states as much as possible
state assignment or encoding

encode states with unique patterns
simulate realization

verify I/O behavior of your state diagram to ensure it matches specification

Winter 2005 CSE370 - X - Sequential Logic Case Studies 9

Mode Input M
0
0
1
1
1
0
0

Current State
000
001
010
110
111
101
110

Next State
001
010
110
111
101
110
111

Complex counter

A synchronous 3-bit counter has a mode control M
when M = 0, the counter counts up in the binary sequence
when M = 1, the counter advances through the Gray code sequence

binary: 000, 001, 010, 011, 100, 101, 110, 111
Gray: 000, 001, 011, 010, 110, 111, 101, 100

Valid I/O behavior (partial)

Winter 2005 CSE370 - X - Sequential Logic Case Studies 10

Complex counter (state diagram)

Deriving state diagram
one state for each output combination
add appropriate arcs for the mode control

S0
[000]

S1
[001]

S2
[010]

S3
[011]

S4
[100]

S5
[101]

S6
[110]

S7
[111]

reset

0

0 0 0 0000
1

1

1
1

11

11

Winter 2005 CSE370 - X - Sequential Logic Case Studies 11

Complex counter (state encoding)

Verilog description including state encoding

module string (clk, M, rst, Z0, Z1, Z2);
input clk, X, rst;
output Z0, Z1, Z2;

parameter S0 = [0,0,0];
parameter S1 = [0,0,1];
parameter S2 = [0,1,0];
parameter S3 = [0,1,1];
parameter S4 = [1,0,0];
parameter S5 = [1,0,1];
parameter S6 = [1,1,0];
parameter S7 = [1,1,1];

reg state[0:2];

assign Z0 = state[0];
assign Z1 = state[1];
assign Z2 = state[2];

always @(posedge clk) begin
if rst state = S0;
else

case (state)
S0: state = S1;
S1: if (M) state = S3 else state = S2;
S2: if (M) state = S6 else state = S3;
S3: if (M) state = S2 else state = S4;
S4: if (M) state = S0 else state = S5;
S5: if (M) state = S4 else state = S6;
S6: if (M) state = S7 else state = S7;
S7: if (M) state = S5 else state = S0;

endcase

end

endmodule

Winter 2005 CSE370 - X - Sequential Logic Case Studies 12

TS/ST

S1

TS'

–/ST

S1a

S1b

S1c

traffic light
controller

timer

TLTSST

Traffic light controller
as two communicating FSMs

Without separate timer
S0 would require 7 states
S1 would require 3 states
S2 would require 7 states
S3 would require 3 states
S1 and S3 have simple transformation
S0 and S2 would require many more arcs

C could change in any of seven states

By factoring out timer
greatly reduce number of states

4 instead of 20
counter only requires seven or eight states

12 total instead of 20

Winter 2005 CSE370 - X - Sequential Logic Case Studies 13

module FSM(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);
output HR;
output HY;
output HG;
output FR;
output FY;
output FG;
output ST;
input TS;
input TL;
input C;
input reset;
input Clk;

reg [6:1] state;
reg ST;

parameter highwaygreen = 6'b001100;
parameter highwayyellow = 6'b010100;
parameter farmroadgreen = 6'b100001;
parameter farmroadyellow = 6'b100010;

assign HR = state[6];
assign HY = state[5];
assign HG = state[4];
assign FR = state[3];
assign FY = state[2];
assign FG = state[1];

specify state bits and codes
for each state as well as
connections to outputs

Traffic light controller FSM

Specification of inputs, outputs, and state elements

Winter 2005 CSE370 - X - Sequential Logic Case Studies 14

initial begin state = highwaygreen; ST = 0; end

always @(posedge Clk)
begin
if (reset)
begin state = highwaygreen; ST = 1; end

else
begin
ST = 0;
case (state)
highwaygreen:
if (TL & C) begin state = highwayyellow; ST = 1; end

highwayyellow:
if (TS) begin state = farmroadgreen; ST = 1; end

farmroadgreen:
if (TL | !C) begin state = farmroadyellow; ST = 1; end

farmroadyellow:
if (TS) begin state = highwaygreen; ST = 1; end

endcase
end

end
endmodule

Traffic light controller FSM (cont’d)

case statement
triggerred by
clock edge

Winter 2005 CSE370 - X - Sequential Logic Case Studies 15

module Timer(TS, TL, ST, Clk);
output TS;
output TL;
input ST;
input Clk;
integer value;

assign TS = (value >= 4); // 5 cycles after reset
assign TL = (value >= 14); // 15 cycles after reset

always @(posedge ST) value = 0; // async reset

always @(posedge Clk) value = value + 1;

endmodule

Timer for traffic light controller

Another FSM

Winter 2005 CSE370 - X - Sequential Logic Case Studies 16

module main(HR, HY, HG, FR, FY, FG, reset, C, Clk);
output HR, HY, HG, FR, FY, FG;
input reset, C, Clk;

Timer part1(TS, TL, ST, Clk);
FSM part2(HR, HY, HG, FR, FY, FG, ST, TS, TL, C, reset, Clk);

endmodule

Complete traffic light controller

Tying it all together (FSM + timer)
structural Verilog (same as a schematic drawing)

traffic light
controller

timer

TLTSST

Winter 2005 CSE370 - X - Sequential Logic Case Studies 17

machines advance in lock step
initial inputs/outputs: X = 0, Y = 0

CLK

FSM1

X

FSM2

Y

A A B

C D D

FSM 1 FSM 2

X

Y

Y==1

A
[1]

Y==0

B
[0]

Y==0

X==1

C
[0]

X==0
X==0

D
[1]

X==1
X==0

Communicating finite state machines

One machine's output is another machine's input

Winter 2005 CSE370 - X - Sequential Logic Case Studies 18

"puppet"

"puppeteer who pulls the strings"
control

data-path

status
info and
inputs

control
signal
outputs

state

Data-path and control

Digital hardware systems = data-path + control
datapath: registers, counters, combinational functional units (e.g., ALU),

communication (e.g., busses)
control: FSM generating sequences of control signals that instructs

datapath what to do next

Winter 2005 CSE370 - X - Sequential Logic Case Studies 19

Digital combinational lock

Door combination lock:
punch in 3 values in sequence and the door opens; if there is an error the
lock must be reset; once the door opens the lock must be reset

inputs: sequence of input values, reset
outputs: door open/close
memory: must remember combination or always have it available

open questions: how do you set the internal combination?
stored in registers (how loaded?)
hardwired via switches set by user

Winter 2005 CSE370 - X - Sequential Logic Case Studies 20

Implementation in software

integer combination_lock () {

integer v1, v2, v3;

integer error = 0;

static integer c[3] = 3, 4, 2;

while (!new_value());

v1 = read_value();

if (v1 != c[1]) then error = 1;

while (!new_value());

v2 = read_value();

if (v2 != c[2]) then error = 1;

while (!new_value());

v3 = read_value();

if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);

}

Winter 2005 CSE370 - X - Sequential Logic Case Studies 21

resetvalue

open/closed

new

clock

Determining details of the specification

How many bits per input value?
How many values in sequence?
How do we know a new input value is entered?
What are the states and state transitions of the system?

Winter 2005 CSE370 - X - Sequential Logic Case Studies 22

Digital combination lock state diagram

States: 5 states
represent point in execution of machine
each state has outputs

Transitions: 6 from state to state, 5 self transitions, 1 global
changes of state occur when clock says its ok
based on value of inputs

Inputs: reset, new, results of comparisons
Output: open/closed

closed closedclosed
C1==value

& new
C2==value

& new
C3==value

& new

C1!=value
& new C2!=value

& new
C3!=value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

Winter 2005 CSE370 - X - Sequential Logic Case Studies 23

reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer
controller

mux
control

clock
4

4 4 4

4

Data-path and control structure

Data-path
storage registers for combination values
multiplexer
comparator

Control
finite-state machine controller
control for data-path (which value to compare)

Winter 2005 CSE370 - X - Sequential Logic Case Studies 24

State table for combination lock

Finite-state machine
refine state diagram to take internal structure into account
state table ready for encoding

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...

next

Winter 2005 CSE370 - X - Sequential Logic Case Studies 25

reset new equal state state mux open/closed
1 – – – 0001 001 0
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 – 1
...

next

mux is identical to last 3 bits of state
open/closed is identical to first bit of state
therefore, we do not even need to implement
FFs to hold state, just use outputs

reset

open/closed

new

equal

controller

mux
control

clock

Encodings for combination lock

Encode state table
state can be: S1, S2, S3, OPEN, or ERR

needs at least 3 bits to encode: 000, 001, 010, 011, 100
and as many as 5: 00001, 00010, 00100, 01000, 10000
choose 4 bits: 0001, 0010, 0100, 1000, 0000

output mux can be: C1, C2, or C3
needs 2 to 3 bits to encode
choose 3 bits: 001, 010, 100

output open/closed can be: open or closed
needs 1 or 2 bits to encode
choose 1 bit: 1, 0

Winter 2005 CSE370 - X - Sequential Logic Case Studies 26

C1 C2 C3

comparator
equal

multiplexer

mux
control

4

4 4 4

4

value

C1i C2i C3i

mux
control

value

equal

Data-path implementation
for combination lock

Multiplexer
easy to implement as combinational logic when few inputs
logic can easily get too big for most PLDs

Winter 2005 CSE370 - X - Sequential Logic Case Studies 27

C1 C2 C3

comparator equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

value

equal

+ oc

open-collector connection
(zero whenever one connection is zero,

one otherwise – wired AND)

tri-state driver
(can disconnect

from output)

Data-path implementation (cont’d)

Tri-state logic
utilize a third output state: “no connection” or “float”
connect outputs together as long as only one is “enabled”
open-collector gates can
only output 0, not 1

can be used to implement
logical AND with only wires

Winter 2005 CSE370 - X - Sequential Logic Case Studies 28

In OE Out
X 0 Z
0 1 0
1 1 1

non-inverting
tri-state
buffer

100

In

OE

Out

Tri-state gates

The third value
logic values: “0”, “1”
don't care: “X” (must be 0 or 1 in real circuit!)
third value or state: “Z” — high impedance, infinite R, no connection

Tri-state gates
additional input – output enable (OE)
output values are 0, 1, and Z
when OE is high, the gate functions normally
when OE is low, the gate is disconnected from wire at output
allows more than one gate to be connected to the same output wire

as long as only one has its output enabled at any one time (otherwise, sparks could fly)

In Out

OE

Winter 2005 CSE370 - X - Sequential Logic Case Studies 29

when Select is high
Input1 is connected to F

when Select is low
Input0 is connected to F

this is essentially a 2:1 mux

OE

OE

FInput0

Input1

Select

Tri-state and multiplexing

When using tri-state logic
(1) make sure never more than one "driver" for a wire at any one time
(pulling high and low at the same time can severely damage circuits)
(2) make sure to only use value on wire when its being driven (using a
floating value may cause failures)

Using tri-state gates to implement an economical multiplexer

Winter 2005 CSE370 - X - Sequential Logic Case Studies 30

open-collector
NAND gates

with ouputs wired together
using "wired-AND"
to form (AB)'(CD)'

Open-collector gates and wired-AND

Open collector: another way to connect gate outputs to the same wire
gate only has the ability to pull its output low
it cannot actively drive the wire high (default – pulled high through resistor)

Wired-AND can be implemented with open collector logic
if A and B are "1", output is actively pulled low
if C and D are "1", output is actively pulled low
if one gate output is low and the other high, then low wins
if both gate outputs are "1", the wire value "floats", pulled high by resistor

low to high transition usually slower than it would have been with a gate pulling high
hence, the two NAND functions are ANDed together

Winter 2005 CSE370 - X - Sequential Logic Case Studies 31

C1 C2 C3

comparatorvalue
equal

multiplexer

mux
control

4

4 4 4

4

ld1 ld2 ld3

Digital combination lock (new data-path)

Decrease number of inputs
Remove 3 code digits as inputs

use code registers
make them loadable from value
need 3 load signal inputs (net gain in input (4*3)–3=9)

could be done with 2 signals and decoder
(ld1, ld2, ld3, load none)

Winter 2005 CSE370 - X - Sequential Logic Case Studies 32

Section summary

FSM design
understanding the problem
generating state diagram
communicating state machines

Four case studies
understand I/O behavior
draw diagrams
enumerate states for the "goal"
expand with error conditions
reuse states whenever possible

Winter 2005 CSE370 - X - Sequential Logic Case Studies 33

Final Lab Project

RS-232 serial line to LCD display
Solution will require 3 22V10 chips on the XLA5 protoboard
We’ll provide a schematic and test fixtures but not the core of
the 3 PALs

Winter 2005 CSE370 - X - Sequential Logic Case Studies 34

Overview of RS232

Very established serial line
communication protocol
Originally designed for
teletypes and modems

Point-to-point, full-duplex
Variable baud (bit) rates
Cheap 9-wire connector
connectors

We’ll only use “Received Data”
along with “Ground”

Winter 2005 CSE370 - X - Sequential Logic Case Studies 35

RS232 serial data format

8 data
bits

start
bit

stop
bit

Winter 2005 CSE370 - X - Sequential Logic Case Studies 36

YOUR CIRCUIT

Block diagram

Major components
RS232 sender (simulation test fixture)
RS232 receiver (logic that goes into XLA board’s FPGA)
Serial-to-parallel converter (Lab 10)
Main controller (Lab 9 and 10)
LCD display (simulation test fixture)

Sender Receiver S-to-P Control DisplayPC

Hyper
Terminal

RS232 Cable
from PC

XLA5 FPGA
PC
hardware

Simulation Model

Winter 2005 CSE370 - X - Sequential Logic Case Studies 37

LCD interface

Eleven signal wires
plus PWR/GND/Vo

1 mode input
1 read/write control
1 enable
8 data lines

valid dataDB

E

valid modeRS

setup
time

hold
time

valid r/wRW

Winter 2005 CSE370 - X - Sequential Logic Case Studies 38

Basic LCD operations

Requires sequence of 4 commands on initialization
Many more commands

E.g., backup cursor, blink, etc.
Data write prints character to display

Operation RS DB7...DB0

Clear Display 0 0000 0001

Function Set 0 0011 0011

Display On 0 0000 1100

Entry Mode Set 0 0000 0110

Write Character 1 DDDD DDDD

Winter 2005 CSE370 - X - Sequential Logic Case Studies 39

ASCII codes

Each character has a unique code
Some codes could be used to
issue commands to display

E.g., clear, backspace, etc.
These are extra credit

Winter 2005 CSE370 - X - Sequential Logic Case Studies 40

Simulation model (lab 9)

RS lcdCMD(7:0)

cmdIndex(1:0)

U1

lcd_cmd
clk CMD(1:0)

reset EN

write RS

U2

lcd_control

en to(7:0)

from(7:0)

U3

tri_driver

EN

RS

RW

data(7:0)

reset

U4

lcd_tf

clk
reset
write

byteToPrint(7:0) GND

Winter 2005 CSE370 - X - Sequential Logic Case Studies 41

Skeleton Verilog files

module lcd_control (clk, reset, write, EN, RS, CMD);
input clk, reset;
input write; // Write a character to the LCD
output EN, RS; // Enable, RS signals of LCD
output [1:0] CMD; // Index for current LCD command

/* YOUR DECLARATIONS ETC. GO HERE */
/* reg [??:??] state; */

always @(posedge clk) begin

/* YOUR CODE GOES HERE */

end

endmodule

Winter 2005 CSE370 - X - Sequential Logic Case Studies 42

Skeleton Verilog files (cont’d)

module lcd_cmd (RS, cmdIndex, lcdCMD);
input RS; // Used to tristate the LCD

CMD
input [1:0] cmdIndex; // Index of the command
output [7:0] lcdCMD; // LCD command

/* YOUR CODE HERE */

endmodule

module tri_driver (en, from, to);
input en;
input [7:0] from;
output [7:0] to;

assign to = (en) ? from : 8'bzzzzzzzz;

endmodule

Winter 2005 CSE370 - X - Sequential Logic Case Studies 43

LCD test fixture
module lcd_tf (reset, RS, EN, RW, data);

input reset, RS, EN, RW;
input [7:0] data;
reg [2:0] resetCnt; // Counts through the reset sequence
parameter CMD0 = 8'h1, CMD1 = 8'h33, CMD2 = 8'hC, CMD3 = 8'h6;
initial begin resetCnt = 0; end
always @(negedge EN) begin

if (reset == 0) begin
if (RW !== 0) begin $display("Error: RW should be 0"); $stop; end
if (RS === 0) begin

// Writing a command
case (resetCnt)
0: begin // First reset

if (data == CMD0) begin $display("Display cleared"); resetCnt = 1; end
else begin $display("Error: Invalid reset command 0"); $stop; end

end
1: begin

if (data == CMD1) begin $display("Display function set"); resetCnt = 2; end
else begin $display("Error: Invalid reset command 1"); $stop; end

end
2: begin

if (data == CMD2) begin $display("Display turned on"); resetCnt = 3; end
else begin $display("Error: Invalid reset command 2"); $stop; end

end
3: begin

if (data == CMD3) begin $display("Display entry mode set"); resetCnt = 4; end
else begin $display("Error: Invalid reset command 3"); $stop; end

end
default: begin

$display("Error: Too many reset commands"); $stop;
end

endcase // case(resetCnt)
end else if (RS === 1) begin // Writing a character

if (resetCnt != 4) begin $display("Display has not been properly reset"); end
$display("Write Character: %c", data);

end // else: !if(RS == 0)
end // if (reset == 0)

end // always @ (negedge EN)
endmodule

Winter 2005 CSE370 - X - Sequential Logic Case Studies 44

Simulation model (lab 10)

RS lcdCMD(7:0)

cmdIndex(1:0)

U1 lcd_cmd

RS out(7:0)

clk

in

shift

U2

tri_driver

charRcvd CMD(1:0)

clk EN

received RS

reset displayed

shift

U3

main_controller

clk recieved

displayed sdata

reset

U4

rs232_tf

EN

RS

RW

data(7:0)

reset

U5

lcd_tf

clk
reset

GND

Winter 2005 CSE370 - X - Sequential Logic Case Studies 45

Four-cycle handshake between modules

Don’t let one get ahead of the other

valid dataData

Displayed

Received

Received

Displayed

Data

Winter 2005 CSE370 - X - Sequential Logic Case Studies 46

Purpose of the project

Learn how to build a realistic system
Read data sheets
Communicating state machines
Deal with existing code/components

