
Winter 2005 CSE370 - X - Working with Sequential Logic 1

Finite state machine optimization

State minimization
fewer states require fewer state bits
fewer bits require fewer logic equations

Encodings: state, inputs, outputs
state encoding with fewer bits has fewer equations to implement

however, each may be more complex
state encoding with more bits (e.g., one-hot) has simpler
equations

complexity directly related to complexity of state diagram
input/output encoding may or may not be under designer control

Winter 2005 CSE370 - X - Working with Sequential Logic 2

Algorithmic approach to state minimization

Goal – identify and combine states that have equivalent behavior
Equivalent states:

same output
for all input combinations, states transition to same or equivalent states

Algorithm sketch
1. place all states in one set
2. initially partition set based on output behavior
3. successively partition resulting subsets based on next state transitions
4. repeat (3) until no further partitioning is required

states left in the same set are equivalent
polynomial time procedure

Winter 2005 CSE370 - X - Working with Sequential Logic 3

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

State minimization example

Sequence detector for 010 or 110

S0

S3

S2S1

S5 S6S4

1/00/0

1/0

1/0
0/1

0/01/00/0

1/0
0/0

1/0
0/1

1/0
0/0

Winter 2005 CSE370 - X - Working with Sequential Logic 4

(S0 S1 S2 S3 S4 S5 S6)

(S0 S1 S2 S3 S5) (S4 S6)

(S0 S3 S5) (S1 S2) (S4 S6)

(S0) (S3 S5) (S1 S2) (S4 S6)

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

S1 is equivalent to S2

S3 is equivalent to S5

S4 is equivalent to S6

Method of successive partitions

Winter 2005 CSE370 - X - Working with Sequential Logic 5

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1' S1' 0 0
0 + 1 S1' S3' S4' 0 0
X0 S3' S0 S0 0 0
X1 S4' S0 S0 1 0

Minimized FSM

State minimized sequence detector for 010 or 110

S0

S1’

S3’ S4’

X/0

1/0

1/00/1

0/0

X/0

Winter 2005 CSE370 - X - Working with Sequential Logic 6

symbolic state
transition table

present next state output
state 00 01 10 11

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S4 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

inputs here

More complex state minimization

Multiple input example

10
01

11

00

00

01

1110

10

01

1100

10
00

11

00

1110

01

10

11
01

00

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

01

Winter 2005 CSE370 - X - Working with Sequential Logic 7

S0-S1
S1-S3
S2-S2
S3-S4

S0-S0
S1-S1
S2-S2
S3-S5

S0-S1
S3-S0
S1-S4
S4-S5

S0-S1
S3-S4
S1-S0
S4-S5

S1-S0
S3-S1
S2-S2
S4-S5

S4-S0
S5-S5

S1-S1
S0-S4

minimized state table
(S0==S4) (S3==S5)

present next state output
state 00 01 10 11

S0' S0' S1 S2 S3' 1
S1 S0' S3' S1 S3' 0
S2 S1 S3' S2 S0' 1
S3' S1 S0' S0' S3' 0

Minimized FSM

Implication chart method
cross out incompatible states based on outputs
then cross out more cells if indexed chart entries are already crossed out

S1

S2

S3

S4

S5

S0 S1 S2 S3 S4

Winter 2005 CSE370 - X - Working with Sequential Logic 8

Minimizing incompletely specified FSMs

Equivalence of states is transitive when machine is fully specified
But its not transitive when don't cares are present

e.g., state output
S0 – 0 S1 is compatible with both S0 and S2
S1 1 – but S0 and S2 are incompatible
S2 – 1

No polynomial time algorithm exists for determining best grouping of
states into equivalent sets that will yield the smallest number of final
states

Winter 2005 CSE370 - X - Working with Sequential Logic 9

X Q1 Q0 Q1
+ Q0

+

0 0 0 0 0
0 0 1 0 0
0 1 1 0 0
1 0 0 0 1
1 0 1 1 1
1 1 1 1 1
– 1 0 0 0

Q1
+ = X (Q1 xor Q0)

Q0
+ = X Q1’ Q0’

Minimizing states may not yield best circuit

Example: edge detector - outputs 1 when input goes from 0 to 1

00
[0]

11
[0]

01
[1]X’

X’

X’

X

X

X

Winter 2005 CSE370 - X - Working with Sequential Logic 10

Another implementation of edge detector

"Ad hoc" solution - not minimal but cheap and fast

00
[0]

10
[0]

01
[1]

X’ X

X’

X

X

X11
[0]

X’

X’

Winter 2005 CSE370 - X - Working with Sequential Logic 11

State assignment

Choose bit vectors to assign to each “symbolic” state
with n state bits for m states there are 2n! / (2n – m)!

[log n <= m <= 2n]
2n codes possible for 1st state, 2n–1 for 2nd, 2n–2 for 3rd, …
huge number even for small values of n and m

intractable for state machines of any size
heuristics are necessary for practical solutions

optimize some metric for the combinational logic
size (amount of logic and number of FFs)
speed (depth of logic and fanout)
dependencies (decomposition)

Winter 2005 CSE370 - X - Working with Sequential Logic 12

State assignment strategies

Possible strategies
sequential – just number states as they appear in the state table
random – pick random codes
one-hot – use as many state bits as there are states (bit=1 –> state)
output – use outputs to help encode states
heuristic – rules of thumb that seem to work in most cases

No guarantee of optimality – another intractable problem

Winter 2005 CSE370 - X - Working with Sequential Logic 13

One-hot state assignment

Simple
easy to encode
easy to debug

Small logic functions
each state function requires only predecessor state bits as input

Good for programmable devices
lots of flip-flops readily available
simple functions with small support (signals its dependent upon)

Impractical for large machines
too many states require too many flip-flops
decompose FSMs into smaller pieces that can be one-hot encoded

Many slight variations to one-hot
one-hot + all-0

Winter 2005 CSE370 - X - Working with Sequential Logic 14

I Q Q+ O
i a c j
i b c k

I Q Q+ O
i a b j
k a c l

I Q Q+ O
i a b j
i c d j

c = i * a + i * b

b = i * a
c = k * a

j = i * a + i * c
b = i * a
d = i * c

i / j i / k

a b

c

a

b c

i / j k / l

b d

i / j
a c

i / j

Heuristics for state assignment

Adjacent codes to states that share a common next state
group 1's in next state map

Adjacent codes to states that share a common ancestor state
group 1's in next state map

Adjacent codes to states that have a common output behavior
group 1's in output map

Winter 2005 CSE370 - X - Working with Sequential Logic 15

General approach to heuristic state assignment

All current methods are variants of this
1) determine which states “attract” each other (weighted pairs)
2) generate constraints on codes (which should be in same cube)
3) place codes on Boolean cube so as to maximize constraints satisfied

(weighted sum)
Different weights make sense depending on whether we are optimizing
for two-level or multi-level forms
Can't consider all possible embeddings of state clusters in Boolean cube

heuristics for ordering embedding
to prune search for best embedding
expand cube (more state bits) to satisfy more constraints

Winter 2005 CSE370 - X - Working with Sequential Logic 16

Output-based encoding

Reuse outputs as state bits - use outputs to help distinguish states
why create new functions for state bits when output can serve as well
fits in nicely with synchronous Mealy implementations

HG = ST’ H1’ H0’ F1 F0’ + ST H1 H0’ F1’ F0
HY = ST H1’ H0’ F1 F0’ + ST’ H1’ H0 F1 F0’
FG = ST H1’ H0 F1 F0’ + ST’ H1 H0’ F1’ F0’
HY = ST H1 H0’ F1’ F0’ + ST’ H1 H0’ F1’ F0

Output patterns are unique to states, we do not
need ANY state bits – implement 5 functions
(one for each output) instead of 7 (outputs plus
2 state bits)

Inputs Present State Next State Outputs
C TL TS ST H F
0 – – HG HG 0 00 10
– 0 – HG HG 0 00 10
1 1 – HG HY 1 00 10
– – 0 HY HY 0 01 10
– – 1 HY FG 1 01 10
1 0 – FG FG 0 10 00
0 – – FG FY 1 10 00
– 1 – FG FY 1 10 00
– – 0 FY FY 0 10 01
– – 1 FY HG 1 10 01

Winter 2005 CSE370 - X - Working with Sequential Logic 17

Current state assignment approaches

For tight encodings using close to the minimum number of state bits
best of 10 random seems to be adequate (averages as well as heuristics)
heuristic approaches are not even close to optimality
used in custom chip design

One-hot encoding
easy for small state machines
generates small equations with easy to estimate complexity
common in FPGAs and other programmable logic

Output-based encoding
ad hoc - no tools
most common approach taken by human designers
yields very small circuits for most FSMs

Winter 2005 CSE370 - X - Working with Sequential Logic 18

State machines
and PLDs

Moore and synchronous
Mealy most common
Output-directed state
assignment

All outputs already
have FFs and are fed
back in as input to
logic array
Use these as part
of the state register
Add only as many
extra states bits as
needed to make
all state codes unique

Winter 2005 CSE370 - X - Working with Sequential Logic 19

State assigment in processors

Instruction register can be viewed as part of state register
Basic cycle

Fetch, decode, execute
Consider concatenation of IR and controller state

{controller_state, IR[31:26]}
Controller_state = fetch, decode, execute1, execute2, …
Fetch and decode states don’t care about IR[31:26]

{fetch, 6’bxxxxxx}
{decode, 6’bxxxxxx}

Full state is op_code in execute1, execute2, …
{execute1, ALU}
{execute1, LW}
{execute2, LW}
{execute3, LW}

Winter 2005 CSE370 - X - Working with Sequential Logic 20

Sequential logic optimization summary

State minimization
straightforward in fully-specified machines
computationally intractable, in general (with don’t cares)

State assignment
many heuristics
best-of-10-random just as good or better for most machines
output encoding can be attractive (especially for PAL implementations)

