
Winter 2005 CSE370 - III - Working with Combinational Logic 1

Working with combinational logic

Simplification
two-level simplification
exploiting don’t cares
algorithm for simplification

Logic realization
two-level logic and canonical forms realized with NANDs and NORs
multi-level logic, converting between ANDs and ORs

Time behavior
Hardware description languages

Winter 2005 CSE370 - III - Working with Combinational Logic 2

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

Design example: two-bit comparator

block diagram

LT
EQ
GT

A B < C D
A B = C D
A B > C D

A
B
C
D

N1

N2

A B C D LT EQ GT
0 0 0 0 0 1 0

0 1 1 0 0
1 0 1 0 0
1 1 1 0 0

0 1 0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 1 0 0

1 0 0 0 0 0 1
0 1 0 0 1
1 0 0 1 0
1 1 1 0 0

1 1 0 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 0 1 0

and
truth table

Winter 2005 CSE370 - III - Working with Combinational Logic 3

A' B' D + A' C + B' C D

B C' D' + A C' + A B D'

LT =

EQ =

GT =

K-map for EQK-map for LT K-map for GT

Design example: two-bit comparator (cont’d)

0 0

1 0

0 0

0 0
D

A

1 1

1 1

0 1

0 0

B

C

1 0

0 1

0 0

0 0
D

A

0 0

0 0

1 0

0 1

B

C

0 1

0 0

1 1

1 1
D

A

0 0

0 0

0 0

1 0

B

C

= (A xnor C) • (B xnor D)

LT and GT are similar (flip A/C and B/D)

A' B' C' D' + A' B C' D + A B C D + A B' C D’

Winter 2005 CSE370 - III - Working with Combinational Logic 4

two alternative
implementations of EQ
with and without XOR

XNOR is implemented with
at least 3 simple gates

A B C D

EQ

EQ

Design example: two-bit comparator (cont’d)

Winter 2005 CSE370 - III - Working with Combinational Logic 5

block diagram
and

truth table

4-variable K-map
for each of the 4
output functions

A2 A1 B2 B1 P8 P4 P2 P1
0 0 0 0 0 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0

0 1 0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 1 0
1 1 0 0 1 1

1 0 0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 0 0
1 1 0 1 1 0

1 1 0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 1 0
1 1 1 0 0 1

Design example: 2x2-bit multiplier

P1
P2
P4
P8

A1
A2
B1
B2

Winter 2005 CSE370 - III - Working with Combinational Logic 6

K-map for P8 K-map for P4

K-map for P2 K-map for P1

Design example: 2x2-bit multiplier (cont’d)

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

0 1

1 1

A1

B2

0 0

0 1

0 0

1 0
B1

A2

0 1

0 0

1 0

0 0

A1

B2

0 0

0 0

0 0

1 1
B1

A2

0 1

0 1

0 1

1 0

A1

B2

0 0

0 0

0 0

0 0
B1

A2

0 0

0 0

1 0

0 0

A1

B2 P8 = A2A1B2B1

P4 = A2B2B1'
+ A2A1'B2

P2 = A2'A1B2
+ A1B2B1'
+ A2B2'B1
+ A2A1'B1

P1 = A1B1

Winter 2005 CSE370 - III - Working with Combinational Logic 7

I8 I4 I2 I1 O8 O4 O2 O1
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X Xblock diagram

and
truth table

4-variable K-map for each of
the 4 output functions

O1
O2
O4
O8

I1
I2
I4
I8

Design example: BCD increment by 1

Winter 2005 CSE370 - III - Working with Combinational Logic 8

O8 = I4 I2 I1 + I8 I1'

O4 = I4 I2' + I4 I1' + I4’ I2 I1

O2 = I8’ I2’ I1 + I2 I1'

O1 = I1'

O8 O4

O2 O1

Design example: BCD increment by 1 (cont’d)

0 0

0 0

X 1

X 0
I1

I8

0 1

0 0

X X

X X

I4

I2

0 0

1 1

X 0

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

0 1

0 1

X 0

X 0
I1

I8

1 0

0 1

X X

X X

I4

I2

1 1

0 0

X 1

X 0
I1

I8

0 0

1 1

X X

X X

I4

I2

Winter 2005 CSE370 - III - Working with Combinational Logic 9

Definition of terms for two-level simplification

Implicant
single element of ON-set or DC-set or any group of these elements that can
be combined to form a subcube

Prime implicant
implicant that can't be combined with another to form a larger subcube

Essential prime implicant
prime implicant is essential if it alone covers an element of ON-set
will participate in ALL possible covers of the ON-set
DC-set used to form prime implicants but not to make implicant essential

Objective:
grow implicant into prime implicants
(minimize literals per term)
cover the ON-set with as few prime implicants as possible
(minimize number of product terms)

Winter 2005 CSE370 - III - Working with Combinational Logic 10

0 X

1 1

1 0

1 0
D

A

1 0

0 0

1 1

1 1

B

C

5 prime implicants:
BD, ABC', ACD, A'BC, A'C'D

Examples to illustrate terms

0 0

1 1

1 0

1 0
D

A

0 1

0 1

1 1

0 0

B

C

6 prime implicants:
A'B'D, BC', AC, A'C'D, AB, B'CD

minimum cover: AC + BC' + A'B'D

essential

minimum cover: 4 essential implicants

essential

Winter 2005 CSE370 - III - Working with Combinational Logic 11

Algorithm for two-level simplification

Algorithm: minimum sum-of-products expression from a Karnaugh map

Step 1: choose an element of the ON-set
Step 2: find "maximal" groupings of 1s and Xs adjacent to that element

consider top/bottom row, left/right column, and corner adjacencies
this forms prime implicants (number of elements always a power of 2)

Repeat Steps 1 and 2 to find all prime implicants

Step 3: revisit the 1s in the K-map
if covered by single prime implicant, it is essential, and participates in final cover
1s covered by essential prime implicant do not need to be revisited

Step 4: if there remain 1s not covered by essential prime implicants
select the smallest number of prime implicants that cover the remaining 1s

Winter 2005 CSE370 - III - Working with Combinational Logic 12

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

3 primes around AB'C'D'

Algorithm for two-level simplification
(example)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around A'BC'D'

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 primes around ABC'D

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

minimum cover (3 primes)

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

2 essential primes

X 1

0 1

0 1

1 1
D

A

0 X

0 1

X 0

0 1

B

C

Winter 2005 CSE370 - III - Working with Combinational Logic 13

Activity

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

BC BD AB AC’DCD’

BDCD’ AC’D

BDCD’ AC’D

List all prime implicants for the following K-map:

Which are essential prime implicants?

What is the minimum cover?

X 0

0 1

X 0

X 1
D

A

0 X

X 1

X 0

1 1

B

C

Winter 2005 CSE370 - III - Working with Combinational Logic 14

Implementations of two-level logic

Sum-of-products
AND gates to form product terms (minterms)
OR gate to form sum

Product-of-sums
OR gates to form sum terms (maxterms)
AND gates to form product

Winter 2005 CSE370 - III - Working with Combinational Logic 15

Two-level logic using NAND gates

Replace minterm AND gates with NAND gates
Place compensating inversion at inputs of OR gate

Winter 2005 CSE370 - III - Working with Combinational Logic 16

Two-level logic using NAND gates (cont’d)

OR gate with inverted inputs is a NAND gate
de Morgan’s: A’ + B’ = (A • B)’

Two-level NAND-NAND network
inverted inputs are not counted
in a typical circuit, inversion is done once and signal distributed

Winter 2005 CSE370 - III - Working with Combinational Logic 17

Two-level logic using NOR gates

Replace maxterm OR gates with NOR gates
Place compensating inversion at inputs of AND gate

Winter 2005 CSE370 - III - Working with Combinational Logic 18

Two-level logic using NOR gates (cont’d)

AND gate with inverted inputs is a NOR gate
de Morgan’s: A’ • B’ = (A + B)’

Two-level NOR-NOR network
inverted inputs are not counted
in a typical circuit, inversion is done once and signal distributed

Winter 2005 CSE370 - III - Working with Combinational Logic 19

OR

NAND NAND

OR AND

NOR NOR

AND

Two-level logic using NAND and NOR gates

NAND-NAND and NOR-NOR networks
de Morgan’s law: (A + B)’ = A’ • B’ (A • B)’ = A’ + B’
written differently: A + B = (A’ • B’)’ (A • B) = (A’ + B’)’

In other words ––
OR is the same as NAND with complemented inputs
AND is the same as NOR with complemented inputs
NAND is the same as OR with complemented inputs
NOR is the same as AND with complemented inputs

Winter 2005 CSE370 - III - Working with Combinational Logic 20

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Conversion between forms

Convert from networks of ANDs and ORs to networks of
NANDs and NORs

introduce appropriate inversions ("bubbles")
Each introduced "bubble" must be matched by a
corresponding "bubble"

conservation of inversions
do not alter logic function

Example: AND/OR to NAND/NAND

Winter 2005 CSE370 - III - Working with Combinational Logic 21

Z = [(A • B)’ • (C • D)’]’

= [(A’ + B’) • (C’ + D’)]’

= [(A’ + B’)’ + (C’ + D’)’]

= (A • B) + (C • D)

Conversion between forms (cont’d)

Example: verify equivalence of two forms

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Winter 2005 CSE370 - III - Working with Combinational Logic 22

Step 2
conserve
"bubbles"

Step 1
conserve
"bubbles"

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NORA

B

C

D

Z

Conversion between forms (cont’d)

Example: map AND/OR network to NOR/NOR network
A

B

C

D

Z

Winter 2005 CSE370 - III - Working with Combinational Logic 23

Z = { [(A’ + B’)’ + (C’ + D’)’]’ }’

= { (A’ + B’) • (C’ + D’) }’

= (A’ + B’)’ + (C’ + D’)’

= (A • B) + (C • D)

Conversion between forms (cont’d)

Example: verify equivalence of two forms

A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

Winter 2005 CSE370 - III - Working with Combinational Logic 24

A
B
C

D
E

F
G

X

Multi-level logic

x = A D F + A E F + B D F + B E F + C D F + C E F + G
reduced sum-of-products form – already simplified
6 x 3-input AND gates + 1 x 7-input OR gate (that may not even
exist!)
25 wires (19 literals plus 6 internal wires)

x = (A + B + C) (D + E) F + G
factored form – not written as two-level S-o-P
1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
10 wires (7 literals plus 3 internal wires)

Winter 2005 CSE370 - III - Working with Combinational Logic 25

Level 1 Level 2 Level 3 Level 4

original
AND-OR
network

A

C
D

B

B
\C

F

introduction and
conservation of

bubbles A

C
D

B

B
\C

F

redrawn in terms
of conventional

NAND gates A

C
D

\B

B
\C

F

Conversion of multi-level logic to NAND gates
F = A (B + C D) + B C’

Winter 2005 CSE370 - III - Working with Combinational Logic 26

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
\C

Foriginal
AND-OR
network

introduction and
conservation of

bubbles A

C

D
B

B

\C

F

redrawn in terms
of conventional

NOR gates
\A

\C
\D

B

\B
C

F

Conversion of multi-level logic to NORs

F = A (B + C D) + B C’

Winter 2005 CSE370 - III - Working with Combinational Logic 27

A

X
B
C
D

F
(a)

original circuit

A

X
B
C
D

F
(b)

add double bubbles at inputs

\D

A

\X
B
C

F(c)

distribute bubbles
some mismatches

\D

A
X

B
C

F
\X

(d)

insert inverters to fix mismatches

Conversion between forms

Example

Winter 2005 CSE370 - III - Working with Combinational Logic 28

&

&
+2x2 AOI gate

symbol

&

&
+3x2 AOI gate

symbol

NAND NAND Invert

possible implementation

A
B

C
D

Z

AND OR Invert

logical concept

A
B

C
D

Z

AND-OR-invert gates

AOI function: three stages of logic — AND, OR, Invert
multiple gates "packaged" as a single circuit block

Winter 2005 CSE370 - III - Working with Combinational Logic 29

&

&
+

A’

B’
A

B

F

Conversion to AOI forms

General procedure to place in AOI form
compute the complement of the function in sum-of-products form
by grouping the 0s in the Karnaugh map

Example: XOR implementation
A xor B = A’ B + A B’
AOI form:

F = (A’ B’ + A B)’

Winter 2005 CSE370 - III - Working with Combinational Logic 30

each implemented in a single 2x2 AOI gate

Examples of using AOI gates

Example:
F = A B + A C’ + B C’
F = (A’ B’ + A’ C + B’ C)’
Implemented by 2-input 3-stack AOI gate

F = (A + B) (A + C’) (B + C’)
F = [(A’ + B’) (A’ + C) (B’ + C)]’
Implemented by 2-input 3-stack OAI gate

Example: 4-bit equality function
Z = (A0 B0 + A0’ B0’)(A1 B1 + A1’ B1’)(A2 B2 + A2’ B2’)(A3 B3 + A3’ B3’)

Winter 2005 CSE370 - III - Working with Combinational Logic 31

high if A0 ≠ B0
low if A0 = B0

if all inputs are low
then Ai = Bi, i=0,...,3

output Z is high

conservation of bubbles

A0
B0

A1
B1

A2
B2

A3
B3

&

&
+

&

&
+

&

&
+

&

&
+

NOR Z

Examples of using AOI gates (cont’d)

Example: AOI implementation of 4-bit equality function

Winter 2005 CSE370 - III - Working with Combinational Logic 32

Summary for multi-level logic

Advantages
circuits may be smaller
gates have smaller fan-in
circuits may be faster

Disadvantages
more difficult to design
tools for optimization are not as good as for two-level
analysis is more complex

Winter 2005 CSE370 - III - Working with Combinational Logic 33

Time behavior of combinational networks

Waveforms
visualization of values carried on signal wires over time
useful in explaining sequences of events (changes in value)

Simulation tools are used to create these waveforms
input to the simulator includes gates and their connections
input stimulus, that is, input signal waveforms

Some terms
gate delay — time for change at input to cause change at output

min delay – typical/nominal delay – max delay
careful designers design for the worst case

rise time — time for output to transition from low to high voltage
fall time — time for output to transition from high to low voltage
pulse width — time that an output stays high or stays low between changes

Winter 2005 CSE370 - III - Working with Combinational Logic 34

F is not always 0
pulse 3 gate-delays wide

D remains high for
three gate delays after

A changes from low to high

F
A B C D

Momentary changes in outputs

Can be useful — pulse shaping circuits
Can be a problem — incorrect circuit operation
(glitches/hazards)
Example: pulse shaping circuit

A’ • A = 0
delays matter

Winter 2005 CSE370 - III - Working with Combinational Logic 35

initially
undefined

close switch

open switch

+

open
switch

resistor
A B

C
D

Oscillatory behavior

Another pulse shaping circuit

Winter 2005 CSE370 - III - Working with Combinational Logic 36

Hardware description languages

Describe hardware at varying levels of abstraction
Structural description

textual replacement for schematic
hierarchical composition of modules from primitives

Behavioral/functional description
describe what module does, not how
synthesis generates circuit for module

Simulation semantics

Winter 2005 CSE370 - III - Working with Combinational Logic 37

HDLs

Abel (circa 1983) - developed by Data-I/O
targeted to programmable logic devices
not good for much more than state machines

ISP (circa 1977) - research project at CMU
simulation, but no synthesis

Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
similar to Pascal and C
delays is only interaction with simulator
fairly efficient and easy to write
IEEE standard

VHDL (circa 1987) - DoD sponsored standard
similar to Ada (emphasis on re-use and maintainability)
simulation semantics visible
very general but verbose
IEEE standard

Winter 2005 CSE370 - III - Working with Combinational Logic 38

Verilog

Supports structural and behavioral descriptions
Structural

explicit structure of the circuit
e.g., each logic gate instantiated and connected to others

Behavioral
program describes input/output behavior of circuit
many structural implementations could have same behavior
e.g., different implementation of one Boolean function

We’ll mostly be using behavioral Verilog in Aldec ActiveHDL
rely on schematic when we want structural descriptions

Winter 2005 CSE370 - III - Working with Combinational Logic 39

module xor_gate (out, a, b);
input a, b;
output out;
wire abar, bbar, t1, t2;

inverter invA (abar, a);
inverter invB (bbar, b);
and_gate and1 (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate or1 (out, t1, t2);

endmodule

Structural model

Winter 2005 CSE370 - III - Working with Combinational Logic 40

module xor_gate (out, a, b);
input a, b;
output out;
reg out;

assign #6 out = a ^ b;

endmodule

Simple behavioral model

Continuous assignment

delay from input change
to output change

simulation register -
keeps track of
value of signal

Winter 2005 CSE370 - III - Working with Combinational Logic 41

module xor_gate (out, a, b);
input a, b;
output out;
reg out;

always @(a or b) begin
#6 out = a ^ b;

end

endmodule

Simple behavioral model

always block

specifies when block is executed
ie. triggered by which signals

Winter 2005 CSE370 - III - Working with Combinational Logic 42

module testbench (x, y);
output x, y;
reg [1:0] cnt;

initial begin
cnt = 0;
repeat (4) begin

#10 cnt = cnt + 1;
$display ("@ time=%d, x=%b, y=%b, cnt=%b",

$time, x, y, cnt); end
#10 $finish;

end

assign x = cnt[1];
assign y = cnt[0];

endmodule

Driving a simulation through a “testbench”

2-bit vector

initial block executed
only once at start
of simulation

directive to stop
simulation

print to a console

Winter 2005 CSE370 - III - Working with Combinational Logic 43

Complete simulation

Instantiate stimulus component and device to test in a
schematic

a

b

z
test-bench

x
y

Winter 2005 CSE370 - III - Working with Combinational Logic 44

module Compare1 (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);

endmodule

Comparator example

Winter 2005 CSE370 - III - Working with Combinational Logic 45

module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
input n0, n1, n2, n3, n4, n5, n6, n7, self;
output out;
reg out;
reg [7:0] neighbors;
reg [3:0] count;
reg [3:0] i;

assign neighbors = {n7, n6, n5, n4, n3, n2, n1, n0};

always @(neighbors or self) begin
count = 0;
for (i = 0; i < 8; i = i+1) count = count + neighbors[i];
out = (count == 3);
out = out | ((self == 1) & (count == 2));

end

endmodule

More complex behavioral model

Winter 2005 CSE370 - III - Working with Combinational Logic 46

Hardware description languages vs.
programming languages

Program structure
instantiation of multiple components of the same type
specify interconnections between modules via schematic
hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)

Assignment
continuous assignment (logic always computes)
propagation delay (computation takes time)
timing of signals is important (when does computation have its effect)

Data structures
size explicitly spelled out - no dynamic structures
no pointers

Parallelism
hardware is naturally parallel (must support multiple threads)
assignments can occur in parallel (not just sequentially)

Winter 2005 CSE370 - III - Working with Combinational Logic 47

Hardware description languages and
combinational logic

Modules - specification of inputs, outputs, bidirectional, and
internal signals
Continuous assignment - a gate’s output is a function of its
inputs at all times (doesn’t need to wait to be "called")
Propagation delay- concept of time and delay in input affecting
gate output
Composition - connecting modules together with wires
Hierarchy - modules encapsulate functional blocks

Winter 2005 CSE370 - III - Working with Combinational Logic 48

Working with combinational logic summary

Design problems
filling in truth tables
incompletely specified functions
simplifying two-level logic

Realizing two-level logic
NAND and NOR networks
networks of Boolean functions and their time behavior

Time behavior
Hardware description languages
Later

combinational logic technologies
more design case studies

