Working with combinational logic

Simplification
o two-level simplification
o exploiting don't cares
o algorithm for simplification
Logic realization
o two-level logic and canonical forms realized with NANDs and NORs
o multi-level logic, converting between ANDs and ORs
Time behavior
Hardware description languages
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Design example: two-bit comparator

A B C D LT EQ GT

0O 0 0 O 0 1 0

0 1 1 0 0

, 1 0 1 0 0
Nl_.@ LT AB<CD 1 1|1 0 0
—f mketee o EETEET
N2___fp GT AB>CD 10/1 0 0
1 1 1 0 0

1 0 0 O 0 0 1

0 1 0 0 1

1 0 0 1 0

1 1 1 0 0

block diagram 11 8 (1) 8 8 i

and 1 0 0 0 1

truth table 11 0 1 o

we'll need a 4-variable Karnaugh map
for each of the 3 output functions
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Design example: two-bit comparator (cont’d)

ol ololo (4] ofofo o [ ] 1

__kﬂoi ol o[ 4] o o|lo|o|o
(o & C C
\L_lJOO o ool 4 o| o|f1) o

K-map for LT K-map for EQ K-map for GT

LT = AB'D+ AC + B'CD
EQ A'B'C'D + ABC'D + ABCD + AB'CD’ = (Axnor C) » (B xnor D)
GT = BC'D' + AC' + ABD

LT and GT are similar (flip A/C and B/D)
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Design example: two-bit comparator (cont’d)

two alternative
) implementations of EQ
with and without XOR

XNOR is implemented with

)DIID at least 3 simple gates
EQ
>
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Design example: 2x2-bit multiplier

A2 A1 B2 B1 [P8 P4 P2 P1
00 0O (0O O 0 O
0 1 0 0 0 0
1 0|0 0O O O
11 |0 0 0 O
Al P1 01 0 O 0 0 0 0
01 |0 0 0 1
A2 P2 10100 0 1 0
Bl P4 1 1 0 0 1 1
1000 [0 O O O
B2 P8 0 1|0 0 1 O
1 0 0 1 0 0
1 1 0 1 1 0
11 00 [0 0 0 O
block diagram 01 1|0 0 1 1
and 1 0 (0 1 1 O
truth table 1 1j1 0 0 1
4-variable K-map
for each of the 4
output functions
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Design example: 2x2-bit multiplier (cont’d)
A2 A2
- K-map 1or 74
olololo K-map for P8 K-map for P4 olololo
P4 = A2B2B1'
0 0 0 0 0 0 0 0
B1 + A2A1'B2+ B1
0 o 0 0 No o1
B2 P8 = A2A1B2B1 B2
oloj|ofo 0| o ‘[ 11
1 1
A2 A2
ol ol ol o K-map for P2 K-map for P1 ol ol ol o
P1 =A1B1
0| o [1 1 B1 of[1] 1]l o B1
ofl1]] 0 ofl1] 1) o
B2 ‘\; = A2'A1B2 B2 L_J
o |l1]] 140 + Al1B2B1' o|lojo|oO
Al + A2B2'B1 Al
+ A2A1'B1
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Design example: BCD increment by 1

18 14 12 11 |08 04 02 01
0 0 O O[O O 0 1
o 0o o 1|0 0 1 o
o 0o 1 o0 0 1 1
o 0 1 1|0 1 0 O
o 1 0 0|0 1 o0 1
1 01 0 1 0 1|0 1 1 0
12 — —> 02 8 1 1 0|0 é é é
1 1 1 |1
14 — 04 1 0 0 011 0 0 1
18 — —— 08 1 0 0 1 ]0 0 0 O
1 0 1 0 |X X X X
1 0 1 1 | X X X X
1 1 0 0 |X X X X
1 1 0 1 |X X X X
block diagram % % % 2 § § § §
and
truth table
4-variable K-map for each of
the 4 output functions
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Design example: BCD increment by 1 (cont’d)

8 . 8
0 0 LX 1J 08 04 0 (1 X 0
0 0 X 0 I 0 ¢_Xj 0
o (x| H] x 08=141211+ 18I [ 1) o x|lx
12 - . Dyl 12
04=1412"+1411'+ 14 1211
o | o [ o [ [«
T - 02=18 1211+ 1211’ 7
8 o1 =11 . 8
02 01 [ J
0 0 X 0 1 1 X 1
1 1 X 0 0 0 X 0
Ll 0
0 0 X X 0 0 X X
12 12
[1 1] X X] [1 1] X x]
4 4
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Definition of terms for two-level simplification

Implicant
o single element of ON-set or DC-set or any group of these elements that can
be combined to form a subcube
Prime implicant
o implicant that can't be combined with another to form a larger subcube
Essential prime implicant
o prime implicant is essential if it alone covers an element of ON-set
o will participate in ALL possible covers of the ON-set
o DC-set used to form prime implicants but not to make implicant essential
Obijective:
o grow implicant into prime implicants
(minimize literals per term)

o cover the ON-set with as few prime implicants as possible
(minimize number of product terms)
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Examples to illustrate terms

A
o I x 1T o 6 prime implicants:
— A'B'D, BC', AC, A'C'D, AB, B'CD
[1 \1] | o D / \
im essential
1ff o |l2|f2
ynnan
o] o (]| 1 minimum cover: AC + BC' + A'B'D
A
5 prime implicants: of o]l o
BD, ABC', ACD, A'BC, A'C'D _—
, , ) ) Do
SNEN/E I
essential c 0 [\t [1 1
minimum cover: 4 essential implicants oLrjojo
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Algorithm for two-level simplification

Algorithm; minimum sum-of-products expression from a Karnaugh map

[}

Step 1: choose an element of the ON-set

Step 2: find "maximal” groupings of 1s and Xs adjacent to that element
consider top/bottom row, left/right column, and corner adjacencies
this forms prime implicants (number of elements always a power of 2)

[}

o Repeat Steps 1 and 2 to find all prime implicants

a Step 3: revisit the 1s in the K-map
if covered by single prime implicant, it is essential, and participates in final cover
1s covered by essential prime implicant do not need to be revisited

a Step 4: if there remain 1s not covered by essential prime implicants
select the smallest number of prime implicants that cover the remaining 1s
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Algorithm for two-level simplification
(example)

A A
X 1 0 1 1
0 1 1 1 0 1 1 1
D D
0 X X 0 0 X X 0
C C
0 1 0 1 0 1 0 1
A —
B
2 primes around A'BC'D
. A A
1 0 X 1 0 1
o [ z||[2]]l2 ol 1|l 1] 1
D D
0 X X 0 0 X X 0 0 X X 0
C C C
0 1 0 1 0 1 0 1 0 1 0 1
A — ! AN—— ! ! ! !
B B
3 primes around AB'C'D' 2 essential primes minimum cover (3 primes)
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Activity

List all prime implicants for the following K-map:

A
X 0 X 0

0 1 X 1

Which are essential prime implicants?

What is the minimum cover?
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Implementations of two-level logic

Sum-of-products
o AND gates to form product terms (minterms) -

o OR gate to form sum 3_

Product-of-sums
o OR gates to form sum terms (maxterms)
o AND gates to form product 'D
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Two-level logic using NAND gates

= Replace minterm AND gates with NAND gates
= Place compensating inversion at inputs of OR gate

=D =
oj_ B o}_

) =
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Two-level logic using NAND gates (cont’d)

= OR gate with inverted inputs is a NAND gate
o de Morgan’s: A'+B =(A*B)

= Two-level NAND-NAND network
o inverted inputs are not counted
o in atypical circuit, inversion is done once and signal distributed

——— ——— —
- ‘ - -

A>T I
= e
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Two-level logic using NOR gates

= Replace maxterm OR gates with NOR gates

= Place compensating inversion at inputs of AN’Dga/te

4o > HT>d
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Two-level logic using NOR gates (cont’d)

= AND gate with inverted inputs is a NOR gate
o de Morgan’s: A B =(A+B)

= Two-level NOR-NOR network
o inverted inputs are not counted
o in atypical circuit, inversion is done once and signal distributed

’ I > Dl
et > T >

: S o)
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Two-level logic using NAND and NOR gates

NAND-NAND and NOR-NOR networks

o de Morgan'slaw: (A+B) = A B’ (A*B) = A'+B
o written differently: A+B = (A’ *B’) (A*B) = (A +BY)
In other words —

o ORis the same as NAND with complemented inputs

o AND is the same as NOR with complemented inputs

o NAND is the same as OR with complemented inputs

o NOR is the same as AND with complemented inputs

: — j‘@ ~|AND ) «——— TJAND
> — e {E) I
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Conversion between forms

Convert from networks of ANDs and ORs to networks of
NANDs and NORs

o introduce appropriate inversions ("bubbles")

Each introduced "bubble" must be matched by a
corresponding "bubble"
o conservation of inversions

o do not alter logic function ’: __°’>_
Example: AND/OR to NAND/NAND

A A
— — —__|NAND Jo——
B | 5 B |
—D_ z NAND)—— Z
o o=

— NAND Jo——
D D
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‘ Conversion between forms (cont’d)

= Example: verify equivalence of two forms

NAND b__
B— |
:W z

~ INAND ——|
D—— )°

Z=[(A+B) «(C D) T
=[A+B) « (C+D) T
[(A+B)+(C+D) ]
(A B +(C D) VvV
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Conversion between forms (cont’d)

= Example: map AND/OR network to NOR/NOR network
A

i::j_lzD— ,

=1
_—D%_:@“L

C —~{>0~L
__{>O__

conserve
"bubbles”

Winter 2005
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L@HD——Z

\C (
)
\D
Step 2
conserve
"bubbles"

22




Conversion between forms (cont’d)

Example: verify equivalence of two forms

\A
" =T
— \B
=1 |
e,
o — > e
—— - \C
b —___INOR
\D
Z = { [ (Al + B!)l + (C1 + Di)l ]1 }l
={ (®+B)-(C+D) ¥
— (Ai + Bl)1 + (C) + Dl)l
= (A-B+(C-D v
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Multi-level logic

x=ADF + AEF+ BDF+ BEF+ CDF + CEF + G
o reduced sum-of-products form — already simplified

o 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even
exist!)

o 25 wires (19 literals plus 6 internal wires)
x=(A+B+C)(D+E)F + G
o factored form — not written as two-level S-o-P
o 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
o 10 wires (7 literals plus 3 internal wires)

A —

e \jD 1o

O Mg Ow
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Conversion of multi-level logic to NAND gates

F=AB+CD)+BC
original

AND-OR
network

introduction and
conservation of
bubbles

redrawn in terms
of conventional
NAND gates

Winter 2005

Level 1

1

Level 2

>

Level 3

‘{D

Level 4

y

1

31
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Conversion of multi-level logic to NORs

F=A(B+CD)+BC

Level 1 Level 2

Level 3

Cc
D
original
AND-OR B
network A
B_]
\C4

introduction and

Level 4

conservation of

bubbles

C—
-
B

A—.

B— 0
\C_—

\C]
\D}

Slissl[s

Y

redrawn in tgrms |
of conventional \A
NOR gates
\B}-
(o I

Winter 2005
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Conversion between forms

= Example
A A—9—
a b
@ g = . B . ®
c X C X
D D
original circuit add double bubbles at inputs

>
>

© B — F

¢ N3 = B P

\D C \X
\D
distribute bubbles . . .
) insert inverters to fix mismatches

some mismatches
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AND-OR-invert gates

= AOI function: three stages of logic — AND, OR, Invert
o multiple gates "packaged" as a single circuit block

logical concept possible implementation
A_] A
B B
3 7 7
C _D I: C j > |>
D D
AND OR Invert NAND NAND Invert
& e
2x2 AOI gate — + 3x2 AOI gate — +
symbol _&_ - symbol _&_ -
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Conversion to AOI forms

General procedure to place in AOI form
o compute the complement of the function in sum-of-products form
o by grouping the Os in the Karnaugh map
Example: XOR implementation
o AxorB=A'B + AB’
o AOI form:
F=(A'B + ABY

A
&
v
B |+ .
A —
&
B —
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Examples of using AOI gates

Example:

on F=AB+AC +BC

o F=(A’B'+A'C+B' C)

Implemented by 2-input 3-stack AOI gate

(]

(]

F=(A+B)(A+C)(B+C)
F=[A+B)(A+C)(B"+C)f
Implemented by 2-input 3-stack OAI gate

[m]

[m]

Example: 4-bit equality function
2 Z=(A0BO + A0’ BO')(A1 B1 + A1’ B1')(A2 B2 + A2’ B2')(A3 B3 + A3’ B3)

each implemented in a single 2x2 AOI gate
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Examples of using AOI gates (cont’d)

Example: AOI implementation of 4-bit equality function

A J g high if A0 = BO
BO—— + low if AO = BO
o-—
L &
Al
B1 ] & . conservation of bubbles
Eolt
10R) 2
A2— 4 g 0 ‘\
B2 9 + if all inputs are low
— & then Ai = Bi, i=0,...,3
T output Z is high
A3—
a4 |, L
L&
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Summary for multi-level logic

Advantages

o circuits may be smaller

o gates have smaller fan-in

o circuits may be faster

Disadvantages

o more difficult to design

o tools for optimization are not as good as for two-level
o analysis is more complex
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Time behavior of combinational networks

Waveforms
o visualization of values carried on signal wires over time
o useful in explaining sequences of events (changes in value)
Simulation tools are used to create these waveforms
o input to the simulator includes gates and their connections
o input stimulus, that is, input signal waveforms
Some terms
o gate delay — time for change at input to cause change at output
min delay — typical/nominal delay — max delay
careful designers design for the worst case
o rise time — time for output to transition from low to high voltage
o fall time — time for output to transition from high to low voltage
o pulse width — time that an output stays high or stays low between changes
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Momentary changes in outputs

Can be useful — pulse shaping circuits

Can be a problem — incorrect circuit operation
(glitches/hazards)

Example: pulse shaping circuit A‘FDQ‘B‘D"—C‘D"JFD— F

o A*A=0

o delays matter . L
é i
B 1 | I
C _
& <« 1 | —
F

D remains high for
three gate delays after ]
A changes from low to high pulse 3 gate-delays wide

\ F is not always O
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Oscillatory behavior

Another pulse shaping circuit
resistor:

—"\\\— +

i DT

close switch =

initia.IIy open switch
undefined
% / 100 | 200

[l =

20 m o3
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Hardware description languages

Describe hardware at varying levels of abstraction
Structural description

o textual replacement for schematic

o hierarchical composition of modules from primitives
Behavioral/functional description

o describe what module does, not how

o synthesis generates circuit for module

Simulation semantics

Winter 2005 CSE370 - 111 - Working with Combinational Logic
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HDLs

Abel (circa 1983) - developed by Data-I/O

o targeted to programmable logic devices

o not good for much more than state machines

ISP (circa 1977) - research project at CMU

o simulation, but no synthesis

Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
o similar to Pascal and C

o delays is only interaction with simulator

o fairly efficient and easy to write

o |EEE standard

VHDL (circa 1987) - DoD sponsored standard

o similar to Ada (emphasis on re-use and maintainability)
o simulation semantics visible

o very general but verbose

o |EEE standard
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Verilog

Supports structural and behavioral descriptions

Structural

o explicit structure of the circuit

o e.g., each logic gate instantiated and connected to others
Behavioral

o program describes input/output behavior of circuit

o many structural implementations could have same behavior

o e.g., different implementation of one Boolean function

We’'ll mostly be using behavioral Verilog in Aldec ActiveHDL
o rely on schematic when we want structural descriptions
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Structural model

module xor_gate (out, a, b);

input a, b;
output out;
wire abar, bbar, tl, t2;

inverter invA (abar, a);
inverter invB (bbar, b);
and_gate andl (tl1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate orl (out, tl, t2);

endmodule
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Simple behavioral model

Continuous assignment

module xor_gate (out, a, b);
input a, b;

output out; / simulation register -
out; keeps track of

reg
value of signal

assign #6 out = a ™ b;

endmodule
delay from input change

to output change
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Simple behavioral model

always block
module xor_gate (out, a, b);
input a, b;
output out;
reg out;

always @(a or b) begin
#6 out = a ™ by

end
endmodule specifies when block is executed
ie. triggered by which signals
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Driving a simulation through a “testbench”
g g

module testbench (X, y);

reg [1:0] cnt;
initial begin _—— | initial block executed

AL only once at start
cnt = 0; _ of simulation
repeat (4) begin
#10 cnt = cnt + 1;
$display ('@ time=%d, x=%b, y=%b, cnt=%b",
$time, X, y, cnt); end

#10 $Finish; \| ,
print to a console
end
assign x = cnt[1]; directive to stop
assign y = cnt[0]; simulation
endmodule
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Complete simulation

Instantiate stimulus component and device to test in a
schematic

a z
X i
test-bench y D—

b
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Comparator example

module Comparel (Equal, Alarger, Blarger, A, B);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (A & ~B);

assign #3 Alarger (A & ~B);

assign #3 Blarger (~A & B);
endmodule
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More complex behavioral model

module life (n0, nl, n2, n3, n4, n5, n6, n7, self, out);

input nO, nl, n2, n3, n4, n5, n6, n7, self;
output out;
reg out;

reg [7:0] neighbors;

reg [3:0] count;

reg [3:0] i;

assign neighbors = {n7, n6, n5, n4, n3, n2, nl, n0};

always @(neighbors or self) begin

count = 0;
for (i = 0; 1 < 8; i = i+l) count = count + neighbors[i];
out = (count == 3);
out = out | ((self == 1) & (count == 2));
end
endmodule
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Hardware description languages vs.
programming languages

Program structure

o instantiation of multiple components of the same type

o specify interconnections between modules via schematic

o hierarchy of modules (only leaves can be HDL in Aldec ActiveHDL)
Assignment

o continuous assignment (logic always computes)

o propagation delay (computation takes time)

o timing of signals is important (when does computation have its effect)
Data structures

o size explicitly spelled out - no dynamic structures

0 no pointers

Parallelism

o hardware is naturally parallel (must support multiple threads)

o assignments can occur in parallel (not just sequentially)
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Hardware description languages and
combinational logic

Modules - specification of inputs, outputs, bidirectional, and
internal signals

Continuous assignment - a gate’s output is a function of its
inputs at all times (doesn’t need to wait to be "called")

Propagation delay- concept of time and delay in input affecting
gate output

Composition - connecting modules together with wires
Hierarchy - modules encapsulate functional blocks
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Working with combinational logic summary

Design problems

o filling in truth tables

o incompletely specified functions

o simplifying two-level logic
Realizing two-level logic

o NAND and NOR networks

o networks of Boolean functions and their time behavior
Time behavior

Hardware description languages
Later

o combinational logic technologies

o more design case studies
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