Combinational Logic Technologies

- Standard gates
 - gate packages
 - cell libraries
- Regular logic
 - multiplexers
 - decoders
- Two-level programmable logic
 - PALs
 - PLAs
 - ROMs

Random logic

- Transistors quickly integrated into logic gates (1960s)
- Catalog of common gates (1970s)
 - Texas Instruments Logic Data Book – the yellow bible
 - all common packages listed and characterized (delays, power)
 - typical packages:
 - in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates
- Today, very few parts are still in use
- However, parts libraries exist for chip design
 - designers reuse already characterized logic gates on chips
 - same reasons as before
 - difference is that the parts don’t exist in physical inventory – created as needed
Random logic

- Too hard to figure out exactly what gates to use
 - map from logic to NAND/NOR networks
 - determine minimum number of packages
 - slight changes to logic function could decrease cost
- Changes to difficult to realize
 - need to rewire parts
 - may need new parts
 - design with spares (few extra inverters and gates on every board)

Regular logic

- Need to make design faster
- Need to make engineering changes easier to make
- Simpler for designers to understand and map to functionality
 - harder to think in terms of specific gates
 - better to think in terms of a large multi-purpose block
Making connections

- Direct point-to-point connections between gates
 - wires we've seen so far
- Route one of many inputs to a single output — multiplexer
- Route a single input to one of many outputs — demultiplexer

Mux and demux

- Switch implementation of multiplexers and demultiplexers
 - can be composed to make arbitrary size switching networks
 - used to implement multiple-source/multiple-destination interconnections
Mux and demux (cont'd)

- Uses of multiplexers/demultiplexers in multi-point connections

![Diagram of MUX and DEMUX](image)

Multiplexers/selectors

- Multiplexers/selectors: general concept
 - 2^n data inputs, n control inputs (called "selects"), 1 output
 - used to connect 2^n points to a single point
 - control signal pattern forms binary index of input connected to output

Z = A' I_0 + A I_1

<table>
<thead>
<tr>
<th>A</th>
<th>Z</th>
<th>I_1</th>
<th>I_0</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>I_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>I_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>I_0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>I_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>I_0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

functional form

logical form

two alternative forms for a 2:1 Mux truth table
Multiplexers/selectors (cont'd)

- **2:1 mux:** \[Z = A'I_0 + AI_1 \]
- **4:1 mux:** \[Z = A'B'I_0 + A'BI_1 + AB'I_2 + ABI_3 \]
- **8:1 mux:** \[Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7 \]

- In general: \[Z = \Sigma_{k=0}^{2^n-1}(m_k |_k) \]
 - in minterm shorthand form for a 2^n:1 Mux

Gate level implementation of muxes

- **2:1 mux**
 ![2:1 mux gate level implementation](image)

- **4:1 mux**
 ![4:1 mux gate level implementation](image)
Cascading multiplexers

- Large multiplexers can be made by cascading smaller ones

control signals B and C simultaneously choose one of 10, 11, 12, 13 and one of 14, 15, 16, 17

control signal A chooses which of the upper or lower mux's output to gate to Z

Multiplexers as general-purpose logic

- A $2^n:1$ multiplexer can implement any function of n variables
 - with the variables used as control inputs and
 - the data inputs tied to 0 or 1
 - in essence, a lookup table

- Example:
 - $F(A, B, C) = m_0 + m_2 + m_6 + m_7$
 - $= A'B'C' + A'BC' + ABC' + ABC$
 - $= A'B'C'(1) + A'BC(0)$
 - $+ A'BC'(1) + A'BC(0)$
 - $+ AB'C'0 + AB'C(0)$
 - $+ ABC'(1) + ABC(1)$

$$Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$$
Multiplexers as general-purpose logic (cont’d)

- A $2^{n-1}:1$ multiplexer can implement any function of n variables
 - with $n-1$ variables used as control inputs and
 - the data inputs tied to the last variable or its complement

- Example:
 - $F(A,B,C) = m_0 + m_2 + m_6 + m_7$
 - $= A'B'C' + A'BC' + ABC' + ABC$
 - $= A'B'(C') + A'B(C') + AB'(0) + AB(1)$

Generalization

n-1 mux control variables

<table>
<thead>
<tr>
<th>I_0</th>
<th>I_1</th>
<th>...</th>
<th>I_{n-1}</th>
<th>I_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>D</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>...</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Activity

- Realize $F = B'CD' + ABC'$ with a 4:1 multiplexer and a minimum of other gates:

Demultiplexers/decoders

- Decoders/demultiplexers: general concept
 - single data input, n control inputs, 2^n outputs
 - control inputs (called “selects” (S)) represent binary index of output to which the input is connected
 - data input usually called “enable” (G)

<table>
<thead>
<tr>
<th>1:2 Decoder:</th>
<th>3:8 Decoder:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O0 = G \cdot S'$</td>
<td>$O0 = G \cdot S2' \cdot S1' \cdot S0'$</td>
</tr>
<tr>
<td>$O1 = G \cdot S$</td>
<td>$O1 = G \cdot S2' \cdot S1' \cdot S0$</td>
</tr>
<tr>
<td>$O2 = G \cdot S1' \cdot S0$</td>
<td>$O2 = G \cdot S2' \cdot S1 \cdot S0'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2:4 Decoder:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O0 = G \cdot S1' \cdot S0'$</td>
</tr>
<tr>
<td>$O1 = G \cdot S1' \cdot S0$</td>
</tr>
<tr>
<td>$O2 = G \cdot S1 \cdot S0'$</td>
</tr>
<tr>
<td>$O3 = G \cdot S1 \cdot S0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3:8 Decoder:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O4 = G \cdot S2' \cdot S1' \cdot S0'$</td>
</tr>
<tr>
<td>$O5 = G \cdot S2 \cdot S1' \cdot S0$</td>
</tr>
<tr>
<td>$O6 = G \cdot S2 \cdot S1 \cdot S0'$</td>
</tr>
<tr>
<td>$O7 = G \cdot S2 \cdot S1 \cdot S0$</td>
</tr>
</tbody>
</table>
Gate level implementation of demultiplexers

- **1:2 decoders**
 - Active-high enable
 - Active-low enable

- **2:4 decoders**

Demultiplexers as general-purpose logic

- A $n:2^n$ decoder can implement any function of n variables
 - with the variables used as control inputs
 - the enable inputs tied to 1 and
 - the appropriate minterms summed to form the function

Demultiplexer generates appropriate minterm based on control signals (it "decodes" control signals)
Demultiplexers as general-purpose logic (cont’d)

- \(F_1 = A'B'CD + A'B'CD + ABCD \)
- \(F_2 = ABC'D' + ABC \)
- \(F_3 = (A' + B' + C' + D') \)

Cascading decoders

- 5:32 decoder
 - 1x2:4 decoder
 - 4x3:8 decoders
Programmable logic arrays

- Pre-fabricated building block of many AND/OR gates
 - actually NOR or NAND
 - "personalized" by making/breaking connections among the gates
 - programmable array block diagram for sum of products form

![Programmable Logic Array Diagram](image)

Enabling concept

- Shared product terms among outputs

```
example:
F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A
```

<table>
<thead>
<tr>
<th>product term</th>
<th>inputs A</th>
<th>B</th>
<th>C</th>
<th>outputs F0</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B'C</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AC'</td>
<td>1</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B'C'</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
```

- Personality matrix
- Input side:
  - 1 = uncomplemented in term
  - 0 = complemented in term
  - = does not participate
- Output side:
  - 1 = term connected to output
  - 0 = no connection to output

[Reuse of terms diagram]

CSE370 - IV - Combinational Logic Technologies
Before programming

- All possible connections are available before "programming"
  - in reality, all AND and OR gates are NANDs

After programming

- Unwanted connections are "blown"
  - fuse (normally connected, break unwanted ones)
  - anti-fuse (normally disconnected, make wanted connections)
Alternate representation for high fan-in structures

- Short-hand notation so we don't have to draw all the wires
  - $\times$ signifies a connection is present and perpendicular signal is an input to gate

notation for implementing
\[
F_0 = A B + A' B' \\
F_1 = C D' + C' D
\]

Programmable logic array example

- Multiple functions of A, B, C
  - $F_1 = A \land B \land C$
  - $F_2 = A \lor B \lor C$
  - $F_3 = A' \land B' \land C'$
  - $F_4 = A' \lor B' \lor C'$
  - $F_5 = A \oplus B \oplus C$
  - $F_6 = A \ominus B \ominus C$

full decoder as for memory address
bits stored in memory

\[
\begin{array}{cccccccc}
A & B & C & F_1 & F_2 & F_3 & F_4 & F_5 & F_6 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
\end{array}
\]
**PALs and PLAs**

- Programmable logic array (PLA)
  - what we've seen so far
  - unconstrained fully-general AND and OR arrays
- Programmable array logic (PAL)
  - constrained topology of the OR array
  - innovation by Monolithic Memories
  - faster and smaller OR plane

A given column of the OR array has access to only a subset of the possible product terms.

**PALs and PLAs: design example**

- BCD to Gray code converter

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Minimized functions:

- \( W = A + BD + BC \)
- \( X = BC' \)
- \( Y = B + C \)
- \( Z = A'B'CD + BCD + AD' + B'CD' \)
not a particularly good candidate for PAL/PLA implementation since no terms are shared among outputs however, much more compact and regular implementation when compared with discrete AND and OR gates

minimized functions:

\[
W = A + BD + BC \\
X = B' C \\
Y = B + C \\
Z = A'B'C'D + BCD + AD' + B'CD'
\]

Code converter: programmed PAL

4 product terms per each OR gate
PALs and PLAs: design example (cont’d)

- Code converter: NAND gate implementation
  - loss or regularity, harder to understand
  - harder to make changes

![Logic diagram for code converter with NAND gates]

PALs and PLAs: another design example

- Magnitude comparator

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>EQ</th>
<th>NE</th>
<th>LT</th>
<th>GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Minimized functions:

- \( EQ = A'B'C'D' + ABC'D + ABCD + AB'CD' \)
- \( NE = AC' + A'C + B'D + BD' \)
- \( LT = A'C + A'B'D + B'CD \)
- \( GT = AC' + ABC + BCD' \)
Activity

- Map the following functions to the PLA below:
  - $W = AB + A'C' + BC'$
  - $X = ABC + AB' + A'B$
  - $Y = ABC' + BC + B'C'$

Activity (cont’d)

- 9 terms won’t fit in a 7 term PLA
  - can apply consensus theorem to $W$ to simplify to: $W = AB + A'C'$
  - 8 terms won’t fit in a 7 term PLA
  - observe that $AB = ABC + ABC'$
  - can rewrite $W$ to reuse terms: $W = ABC + ABC' + A'C'$
  - Now it fits
  - $W = ABC + ABC' + A'C'$
  - $X = ABC + AB' + A'B$
  - $Y = ABC' + BC + B'C'$

This is called technology mapping: manipulating logic functions so that they can use available resources.
### Read-only memories

- Two dimensional array of 1s and 0s
  - entry (row) is called a "word"
  - width of row = word-size
  - index is called an "address"
  - address is input
  - selected word is output

![Decoder Diagram](image1)

**Truth Table**

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F0</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Word Lines**

- normally pulled to 1 through resistor
- selectively connected to 0 by word line controlled switches

**RIOM block diagram**

#### ROMs and combinational logic

- Combinational logic implementation (two-level canonical form) using a ROM

\[
\begin{align*}
F_0 &= A'B'C + A'B'C' + AB'C \\
F_1 &= A'B'C + A'B'C' + AB'C \\
F_2 &= A'B'C + A'B'C + AB'C' \\
F_3 &= A'B'C + A'B'C + AB'C
\end{align*}
\]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>F0</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**ROM**

- 8 words x 4 bits/word

![ROM Block Diagram](image2)
ROM structure

- Similar to a PLA structure but with a fully decoded AND array
  - completely flexible OR array (unlike PAL)

```
<table>
<thead>
<tr>
<th>n address lines</th>
<th>n inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>decoder</td>
</tr>
<tr>
<td></td>
<td>2^n word lines</td>
</tr>
<tr>
<td></td>
<td>memory array</td>
</tr>
<tr>
<td></td>
<td>(2^n words by m bits)</td>
</tr>
<tr>
<td></td>
<td>outputs</td>
</tr>
<tr>
<td></td>
<td>m data lines</td>
</tr>
</tbody>
</table>
```

ROM vs. PLA

- ROM approach advantageous when
  - design time is short (no need to minimize output functions)
  - most input combinations are needed (e.g., code converters)
  - little sharing of product terms among output functions

- ROM problems
  - size doubles for each additional input
  - can't exploit don't cares

- PLA approach advantageous when
  - design tools are available for multi-output minimization
  - there are relatively few unique minterm combinations
  - many minterms are shared among the output functions

- PLA problems
  - constrained fan-ins on OR plane
Regular logic structures for two-level logic

- ROM – full AND plane, general OR plane
  - cheap (high-volume component)
  - can implement any function of n inputs
  - medium speed
- PAL – programmable AND plane, fixed OR plane
  - intermediate cost
  - can implement functions limited by number of terms
  - high speed (only one programmable plane that is much smaller than ROM's decoder)
- PLA – programmable AND and OR planes
  - most expensive (most complex in design, need more sophisticated tools)
  - can implement any function up to a product term limit
  - slow (two programmable planes)

Regular logic structures for multi-level logic

- Difficult to devise a regular structure for arbitrary connections between a large set of different types of gates
  - efficiency/speed concerns for such a structure
  - in 467 you'll learn about field programmable gate arrays (FPGAs) that are just such programmable multi-level structures
    - programmable multiplexers for wiring
    - lookup tables for logic functions (programming fills in the table)
    - multi-purpose cells (utilization is the big issue)
- Use multiple levels of PALs/PLAs/ROMs
  - output intermediate result
  - make it an input to be used in further logic
Combinational logic technology summary

- Random logic
  - Single gates or in groups
  - Conversion to NAND-NAND and NOR-NOR networks
  - Transition from simple gates to more complex gate building blocks
  - Reduced gate count, fan-ins, potentially faster
  - More levels, harder to design
- Time response in combinational networks
  - Gate delays and timing waveforms
  - Hazards/glitches (what they are and why they happen)
- Regular logic
  - Multiplexers/decoders
  - ROMs
  - PLAs/PALs
  - Advantages/disadvantages of each