CSE370: Introduction to Digital Design

Course staff

o Bruce Hemingway, Lucas Kreiger, Waylon Brunette

Course web

o currently: www.cs.washington.edu/education/courses/370/04wi/
o soon to be: www.cs.washington.edu/370/

Today
o Class administration, overview of course web, and logistics

This week

o What is logic design?

o What is digital hardware?

o What will we be doing in this class?

CSE370 - I - Introduction

Why are we herer?

Obvious reasons

o this course is part of the CS/CompE requirements

o itis the implementation basis for all modern computing devices
building large things from small components
provide a model of how a computer works

More important reasons

o the inherent parallelism in hardware is often our first exposure to
parallel computation

o it offers an interesting counterpoint to software design and is
therefore
useful in furthering our understanding of computation, in general

CSE370 - I - Introduction

What will we learn in CSE370?

The language of logic design

o Boolean algebra, logic minimization, state, timing, CAD tools

The concept of state in digital systems

o analogous to variables and program counters in software systems
How to specify/simulate/compile/realize our designs

o hardware description languages

o tools to simulate the workings of our designs

o logic compilers to synthesize the hardware blocks of our designs
o mapping onto programmable hardware

Contrast with software design

o sequential and parallel implementations

o specify algorithm as well as computing/storage resources it will use

CSE370 - I - Introduction 3

Applications of logic design

Conventional computer design

o CPUs, busses, peripherals

Networking and communications

o phones, modems, routers

Embedded products

o in cars, toys, appliances, entertainment devices

Scientific equipment

o testing, sensing, reporting

The world of computing is much much bigger than just PCs!

CSE370 - I - Introduction 4

The Digital Age

Computing is in its infancy
o Processing power
Doubles every 18 months
Factor of 100 / decade
o Disk capacity
Doubles every 12 months
Factor of 1000 / decade
o Optical fiber transmission capacity
Doubles every 9 months
Factor of 10,000 / decade
The bases are mathematics and switches
o How did we get here?

CSE370 - I - Introduction

Diophantus of Alexandria b. ~200 BCE

DIOP HANTI Known as the “father of algebra”

AL%(\& X?IFIDCP(‘)ISXI]M Arithmetica is a collection of 130
ARIT L1BRI SE%. problems that gives numerical solutions
ET DE NVMERIS MVLTANGVLE. of determinate equations, which have a

LIBER ¥NF¥5 . - - -
oo nensrze. Unique solution, and indeterminate
‘ Dottrine Analyica fauntum nonam i;&um equatlons'
The Later Alexandrian Age was a time
when mathematicians were discovering
many ideas that lead to our concept of
mathematics today.

TER &

X o

CSE370 - I - Introduction

6

Abu Ja'far Muhammad ibn Musa al-

Khwarizmi

= Lived in Baghdad, 780 to 850 AD.
One of the first to write on algebra
(using words, not letters) and also
Hindu-Arabic numbers (1, 2, 3, ...).

= From his name and writings came the

words "algebra" and "algorithm".

= Book:Hisab al-jabr w’al-mugabala

ESlanbXoeamu

CSE370 - I - Introduction

1822

= Charles Babbage
o Father of computing

= 1822 Difference Engine
o A calculator

= 1834 Analytical Engine
o A computer
o Programmable

Analytical
Engine

CSE370 - I - Introduction

1854

= George Boole
o Boolean algebra
= Number system with 2 values

o 011 < falseftrue All computers use

2 Do math on logic statements Boolean algebra
o 3 operations (NOT, AND, OR)

NOT AND

A | Out

0 1

1 0

CSE370 - I - Introduction 9
1938

= Claude Shannon
o Implemented Boolean algebra using

switches
o Described information using binary
digits (bits)
A B B Out
A —[>o— ot 1—e"e—e"e o 1—e"¢
NOT AND
A | Out
0 1
1 0

CSE370 - I - Introduction 10

Computer Hardware

= Components

o Logic o Memory
A NOR Latch
1—o" B
B Out A—/ Out
1—o"¢
B Adder Adder
A B | Sum carry
A B:}_S“’ 0 0]l 0 o
0 1 1 0
A B 1 0f1 o0
1 —” o—e" o Carry 1 1]o0 1
CSE370 - I - Introduction 11
1937
= Alan Turing

o Turing Machines
= Simple computer model
o Can something be computed?

Sections may contain

‘ Turing Machine | 1 or 0, or be blark

Infinitely extendable tape

N
Tape head, looks at
otie section at a time

CSE370 - I - Introduction

Also pioneered
artificial intelligence

1945

= John von Neumann
o First stored computer program
= A sequence of operations
o Read from memory
o Operate using logic gates
o Store result into memory Other contributions:
Quantum Mechanics
Cellular Automata
Game Theory

CSE370 - I - Introduction 13

Stored Programs = Software

Bill Gates and Paul Allen, Lakeside, 1968

CSE370 - I - Introduction 14

‘ Hardware + Software

e Py,
R Eog' am
Memory Logic (CPU)
—
Problem Program }

—o
Data H >0

computer

CSE370 - I - Introduction 15

1946

= ENIAC...the first computer

1000x faster than
anything before...

19,000 tubes
200 kilowatts

357 multiplies per
second

CSE370 - I - Introduction 16

1947

= Bardeen, Brattain, Shockley invent the transistor

1947 2000

NobeI Prize, 1956 Courtesy Mar Bohr, IteI

CSE370 - I - Introduction 17

1958

= Kilby and Noyce invent
the integrated circuit

1958

[

4.8k xs 86K ‘3. 5% um

Nobel Prize, 2000 Courtesy Yan Borodovsky, Intel

CSE370 - I - Introduction 18

1965

= Gordon Moore i/ i -
o Moore’s Law: The transistor '
density of silicon chips doubles & |
every 18 months

transistors

Pentium® 4 Processor,] 100,000,000
Pentium® Il Processor
MOORE'S LAW
Pentium® il Processor 10,000,000
Pentium® Processer

486™ DX Processor,
1 1,000,000

4 100,000

10,000
: 1000
1985 1990 1995 2000
CSE370 - I - Introduction 19

1971

= Ted Hoff invents the
microprocessor

= Intel 4004
o 2,300 transistors
o 3 mm by 4 mm

o As powerful as the
ENIAC

CSE370 - I - Introduction 20

‘ Hardware + Software + Technology

Problem

Program

Data

compuer

CSE370 - I - Introduction

21

1977 and 1981

= Apple Il and IBM PC

o The first microcomputers

CSE370 - I - Introduction

22

A modern example
Tritonia and seapen

= Goal: Interface a computer to
an animal brain

o Measure brain signals in intact
animals

Tritonia diomedea MEMS probe tip,
amplifier brain

visceral
cavity A

\
memory battery microcontroller,
A/D, cache

Courtesy Jim Beck and Russell Wyeth

CSE370 - I - Introduction 23

More modern examples

= Computing everywhere

o Wireless/wired networking
o Wearable devices

a Smart sensors

&

\

CSE370 - I - Introduction 24

What is logic design?

What is design?

o given a specification of a problem, come up with a way of solving
it choosing appropriately from a collection of available
components

o while meeting some criteria for size, cost, power, beauty,
elegance, etc.

What is logic design?

o determining the collection of digital logic components to perform
a specified control and/or data manipulation and/or
communication function and the interconnections between them

o which logic components to choose? — there are many
implementation technologies (e.g., off-the-shelf fixed-function
components, programmable devices, transistors on a chip, etc.)

o the design may need to be optimized and/or transformed to meet
design constraints

CSE370 - I - Introduction 25

What 1s digital hardware?

Collection of devices that sense and/or control wires that carry a
digital value (i.e., a physical quantity that can be interpreted
as a*“0”or*"1”)
o example: digital logic where voltage < 0.8v is a “0” and > 2.0v is a “1”
o example: pair of transmission wires where a “0” or “1” is distinguished
by which wire has a higher voltage (differential)

o example: orientation of magnetization signifies a “0” or a “1”
Primitive digital hardware devices
o logic computation devices (sense and drive)

are two wires both “1” - make another be “1” (AND)

is at least one of two wires “1” - make another be “1” (OR)

is a wire “1” - then make another be “0” (NOT)
o memory devices (store) sense

store a value

recall a previously stored value @ drive

CSE370 - I - Introduction sense 26

What is happening now in digital design?

= Important trends in how industry does hardware design
o larger and larger designs
o shorter and shorter time to market
o cheaper and cheaper products
= Scale
o pervasive use of computer-aided design tools over hand methods
o multiple levels of design representation
= Time
o emphasis on abstract design representations
o programmable rather than fixed function components
o automatic synthesis techniques
o importance of sound design methodologies
= Cost
o higher levels of integration
o use of simulation to debug designs
o simulate and verify before you build

CSE370 - I - Introduction 27

CSE 370: concepts/skills/abilities

= Understanding the basics of logic design (concepts)

= Understanding sound design methodologies (concepts)

= Modern specification methods (concepts)

= Familiarity with a full set of CAD tools (skills)

= Realize digital designs in an implementation technology (skills)

= Appreciation for the differences and similarities (abilities)
in hardware and software design

New ability: to accomplish the logic design task with the aid of computer-aided
design tools and map a problem description into an implementation with
programmable logic devices after validation via simulation and understanding
of the advantages/disadvantages as compared to a software implementation

CSE370 - I - Introduction 28

Computation: abstract vs. implementation

Up to now, computation has been a mental exercise (paper,
programs)

This class is about physically implementing computation using
physical devices that use voltages to represent logical values

Basic units of computation are:

o representation: "0", "1" on a wire
set of wires (e.g., for binary ints)
o assignment: X =Y
o data operations: X+y—-5
o control:
sequential statements: A; B; C
conditionals: if x==1 then y
loops: for(i=1;i==10, i++)
procedures: A; proc(...); B;

We will study how each of these are implemented in hardware
and composed into computational structures

CSE370 - I - Introduction 29

Switches: basic element of physical
implementations

Implementing a simple circuit (arrow shows action if wire
changes to “1”):

| A z
® close switch (if A is “1” or asserted)
I““I and turn on light bulb (2)
[A i
o—o open switch (if A is “0” or unasserted)
I““I and turn off light bulb (2)
Z=A

CSE370 - I - Introduction 30

Switches (cont’d)

Compose switches into more complex ones (Boolean
functions):

A and B

—ee—ee— ¢

CSE370 - I - Introduction 31

Switching networks

Switch settings

o determine whether or not a conducting path exists to light
the light bulb

To build larger computations

o use a light bulb (output of the network) to set other switches
(inputs to another network).

Connect together switching networks

o to construct larger switching networks, i.e., there is a way to
connect outputs of one network to the inputs of the next.

CSE370 - I - Introduction 32

Relay networks

A simple way to convert between conducting paths and
switch settings is to use (electro-mechanical) relays.

What is a relay?

| N4
conducting ||||
path composed
of switches
closes circuit

current flowing through coil
magnetizes core and causes normally
closed (nc) contact to be pulled open

when no current flows, the spring of the contact
returns it to its normal position

What determines the switching speed of a relay network?

CSE370 - I - Introduction 33

Transistor networks

Relays aren't used much anymore

o some traffic light controllers are still electro-mechanical
Modern digital systems are designed in CMOS technology
o MOS stands for Metal-Oxide on Semiconductor

o Cis for complementary because there are both normally-open
and normally-closed switches

MOS transistors act as voltage-controlled switches
o similar, though easier to work with than relays.

CSE370 - I - Introduction 34

MOS transistors

MOS transistors have three terminals: drain, gate, and source

o they act as switches in the following way:
if the voltage on the gate terminal is (some amount) higher/lower
than the source terminal then a conducting path will be
established between the drain and source terminals

G G
c—I L_p s—I L_p
n-channel p-channel
open when voltage at G is low closed when voltage at G is low
closes when: opens when:
voltage(G) > voltage (S) + ¢ voltage(G) < voltage (S) — ¢
CSE370 - I - Introduction 35

MOS networks

X what is the
relationship
;I, between x and y?
3y — | L
X y
¢ Y 0 volts
Ov — L 3 volts

CSE370 - I - Introduction 36

Two input networks

X Y
+
3v & what is the
] relationship
—|_:_ 7 between x, y and z?
1
Ov 1 1 X y z1 72
X Y 0 volts 0 volts
O 0 0 volts 3 volts
v —I |1 11
3 volts 0 volts
'—_—_:_ 22 3 volts 3 volts
Ov l_l_\—
CSE370 - I - Introduction 37
Speed of MOS networks

What influences the speed of CMOS networks?
o charging and discharging of voltages on wires and gates of

transistors
Capacitors hold charge

o capacitance is at gates of transistors and wire material

Resistors slow movement of electrons
o resistance mostly due to transistors

CSE370 - I - Introduction

38

Representation of digital designs

Switches

Truth tables

Boolean algebra

Gates

Waveforms

Finite state behavior
Register-transfer behavior

scope of CSE 370

CSE370 - I - Introduction 39

Digital vs. analog

Convenient to think of digital systems as having only
discrete, digital, input/output values

In reality, real electronic components exhibit
continuous, analog, behavior

Why do we make the digital abstraction anyway?

o switches operate this way

o easier to think about a small number of discrete values
Why does it work?

o does not propagate small errors in values

o always resetsto 0 or 1

CSE370 - I - Introduction 40

Mapping from physical world to binary world

Technology State 0 State 1
Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitor Charged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

CSE370 - I - Introduction 41

Combinational vs. sequential digital circuits

A simple model of a digital system is a unit with inputs and
outputs:

inputs ——— system [——* outputs

Combinational means "memory-less”

o adigital circuit is combinational if its output values
only depend on its input values

CSE370 - I - Introduction 42

Combinational logic symbols

Common combinational logic systems have standard symbols
called logic gates

o Buffer, NOT

Az >
o AND, NAND
A easy to implement
z
B :D_ :D_ with CMOS transistors
(the switches we have
o OR, NOR available and use most)
A
B >z >
CSE370 - I - Introduction 43

Sequential logic

Sequential systems

o exhibit behaviors (output values) that depend not only
on the current input values, but also on previous input values

In reality, all real circuits are sequential

o because the outputs do not change instantaneously after an
input change

o why not, and why is it then sequential?

A fundamental abstraction of digital design is to reason

(mostly) about steady-state behaviors

o look at the outputs only after sufficient time has elapsed for the
system to make its required changes and settle down

CSE370 - I - Introduction 44

Synchronous sequential digital systems

Outputs of a combinational circuit depend only on current inputs

Q

after sufficient time has elapsed

Sequential circuits have memory

a

even after waiting for the transient activity to finish

The steady-state abstraction is so useful that most designers
use a form of it when constructing sequential circuits:

a

a

the memory of a system is represented as its state

changes in system state are only allowed to occur at
controlled by an external periodic clock

specific times

the clock period is the time that elapses between state changes it

must be sufficiently long so that the system reaches
before the next state change at the end of the period

CSE370 - I - Introduction

a steady-state

45

Example of combinational and sequential logic

Combinational:

Sequential:

Q

| S S

input A, B
wait for clock edge

observe C A —
wait for another clock edge

observe C again: will stay the same

input A, B

walit for clock edge

observe C

wait for another clock edge
observe C again: may be different

CSE370 - I - Introduction

I Clock

46

Abstractions

Some we've seen already

Q

Q

a

a

digital interpretation of analog values

transistors as switches

switches as logic gates

use of a clock to realize a synchronous sequential circuit

Some others we will see

a

a

truth tables and Boolean algebra to represent combinational logic

encoding of signals with more than two logical values into
binary form

state diagrams to represent sequential logic
hardware description languages to represent digital logic
waveforms to represent temporal behavior

CSE370 - I - Introduction 47

An example

Calendar subsystem: number of days in a month (to control
watch display)

a

Q

Q

used in controlling the display of a wrist-watch LCD screen

inputs: month, leap year flag
outputs: number of days

CSE370 - I - Introduction 48

Implementation in software

integer number of_days (month, leap_year_flag)
{
switch (month) {
case 1: return (31);

case 2: if (leap_year flag == 1) then return (29)
else return (28);

case 3: return (31);

case 12: return (31);
default: return (0);

CSE370 - I - Introduction

Implementation as a
combinational digital system

Encoding:

o how many bits for each input/output?
a binary number for month —p—g‘o%”oth leap | d28 d23 d30 d
o four wires for 28, 29, 30, and 31 0001 - 0 0 0 1
. 0010 0 1 0 0 O
Behavior: 0010 1 0 1 0 0
binational 0011 - 0 0 0 1
o combinationa 0100 - 0 0 1 0
0101 - 0O 0 O 1
Q truthltlable. month leap 0110 - 0 0 1 0
specification l l l l l 0111 - 0 0 0 1
1000 - 0 0 0 1
1001 - 0 0 1 0
1010 - 0 0 0 1
1011 - 0 0 1 0
1100 - 0 0 O 1
L1 T
11— - - - - -

d28 d29d30d31

CSE370 - I - Introduction

(O¥]
—_

Combinational example (cont’d)

Truth-table to logic to switches to gates

Q

Q

d28 = 1 when month=0010 and leap=0 s mbolt
d28 = m8'*m4'sm2:m1'sleap' ornet

d31 = 1 when month=0001 or month=0011 or ... month=1100
d31 = (m8'*m4'sm2'sm1) + (M8'*m4'sm2:m1) + ...

(m8sm4sm2'sm1’)
- __month __leap |
d31 = can we siniplify more? Bno%nlth <

0010 0
1

N
(o]

|11 1 © ocorooa
N
(¢

_—OOoOoOoon
(%]
o

O OO+
(o8]
—

0010
symbol S Q"%OI 0011
for and ror 0100
1100
1101

111-
0000

|l 1 1 © ocoocoorola

1o
[

CSE370 - I - Introduction 51

Combinational example (cont’d)

d28 = m8'sm4'*m2+.m1'sleap’
d29 = m8'sm4'*m2+.m1'sleap
d30 = (m8'*m4+sm2'sm1') + (M8'sm4sm2+m1’) +

m8em4'*m2'sm1) + (M8+m4'sm2+m1)
m8'em4+sm1') + (m8*m4'sm1)

m8'em4+sm2'sm1) + (M8'*m4em2.m1) +
m8em4'*m2'sm1') + (M8sm4'sm2.m1’) +

(
= (
d31 = (m8'*m4'sm2'sm1) + (M8'sm4'sm2°m1) +
(
(
(

m8sm4sm2'sm1’)

rad rad

e i
i a8 g dzh
il il
leap leap

CSE370 - I - Introduction 52

Activity

How much can we simplify d317?

What if we started the months with 0 instead of 1?
(i.e., January is 0000 and December is 1011)

CSE370 - I - Introduction

53

Combinational example (cont’d)

d28 = m8'sm4'*m2+.m1'sleap’

d29 = m8'sm4'*m2+.m1'sleap

d30 = (m8'*m4+m2'sm1') + (M8'*m4+sm2:m1’) +
(m8sm4'sm2'*m1) + (mM8*m4'*m2°m1)

d31 = (m8'*m4'sm2'sm1) + (M8'*m4'*m2°m1) +
(m8'*m4em2'*m1) + (m8'sm4em2°m1) +
(m8sm4'sm2'*m4’) + (m8*m4'sm2°m1’) +
(m8sm4+m2'sm1')

CSE370 - I - Introduction

Another example

Door combination lock:

o punch in 3 values in sequence and the door opens; if there is an
error the lock must be reset; once the door opens the lock must
be reset

o inputs: sequence of input values, reset
o outputs: door open/close

o memory: must remember combination
or always have it available as an input

CSE370 - I - Introduction 55

Implementation in software

integer combination_lock () {
integer vl, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value());
vl = read_value();
if (vl != c[1l]) then error = 1;

while (!new_value());
v2 = read_value();
if (v2 != c[2]) then error = 1;

while (!new_value());
v3 = read _value();

if (v2 != c[3]) then error 1;

if (error == 1) then return(0); else return (1);

CSE370 - I - Introduction 56

Implementation as a sequential digital system

Encoding:

o how many bits per input value?

o how many values in sequence?

o how do we know a new input value is entered?

o how do we represent the states of the system?

Behavior: new value reset

" ook atmputs LU

(i.e., they have settled after change)

o sequential: sequence of values clock —>
must be entered
o sequential: remember if an error occurred open/closed

o finite-state specification

CSE370 - I - Introduction 57

Sequential example (cont’d):
abstract control

Finite-state diagram

o states: 5 states
represent point in execution of machine
each state has outputs

o transitions: 6 from state to state, 5 self transitions, 1 global
changes of state occur when clock says it's ok
based on value of inputs

o inputs: reset, new, results of comparisons

o output: open/closed

/\§1
reset closed

OPEN
Cl=value C2=value C3=value @

& new & new U & new U

not new not new not new

Cl!=value

CSE370 - I - Introduction 58

Sequential example (cont’d):
data-path vs. control

= Internal structure

o data-path o control
= storage for combination = finite-state machine controller
= comparators = control for data-path

= state changes controlled by clock

new equal reset

controller
«—clock
equal open/closed
CSE370 - I - Introduction 59

Sequential example (cont’d):
finite-state machine

= Finite-state machine
o refine state diagram to include internal structure

not equal

& new
OPEN

/\51

closed

reset ux=CJ~ equal "\mux=C7Z equal w equal "\ oPen
& new & new & new

il il

CSE370 - I - Introduction 60

Sequential example (cont’d):
tinite-state machine

Finite-state machine
o generate state table (much like a truth-table)

not equal
& new

not equal

& ne
1 W

cle

reset

not new not new not new

next

reset _new equal state | state mux open/closed
1 - - - S1 C1 closed
0 0 - S1 S1 C1 closed
0 1 0 S1 ERR - closed
0 1 1 S1 S2 C2 closed
0 0 - S2 S2 c2 closed
0 1 0 S2 ERR - closed
0 1 1 S2 S3 C3 closed
0 0 - S3 S3 C3 closed
0 1 0 S3 ERR - closed
0 1 1 S3 OPEN - open
0 - - OPEN | OPEN - open
0 - - ERR ERR - closed

CSE370 - I - Introduction

eq
3, P
oz (losedy Gosed
ux=A equal” poux= equal” ux= equal’ \ open
& new & new & new

61

Sequential example (cont’d):
encoding

Encode state table
o state can be: S1, S2, S3, OPEN, or ERR
needs at least 3 bits to encode: 000, 001, 010, 011, 100
and as many as 5: 00001, 00010, 00100, 01000, 10000
choose 4 bits: 0001, 0010, 0100, 1000, 0000
o output mux can be: C1, C2, or C3
needs 2 to 3 bits to encode
choose 3 bits: 001, 010, 100
o output open/closed can be: open or closed
needs 1 or 2 bits to encode
choose 1 bits: 1,0

CSE370 - I - Introduction

62

Sequential example (cont’d):
encoding

Encode state table

o state can be: S1, S2, S3, OPEN, or ERR
choose 4 bits: 0001, 0010, 0100, 1000, 0000

o output mux can be: C1, C2, or C3
choose 3 bits: 001, 010, 100

o output open/closed can be: open or closed
choose 1 bits: 1, 0

next
reset new equal state | state = mux open/closed
1 - - - 0001 001 0
0 0 - 0001 [0001 001 0
0 1 0 0001 | 0000 - 0 good choice of encoding!
0 1 1 0001 [0010 o010 0
0 0 - 0010 | 0010 010 0 mux is identical to
0 ! 0 0010 | 0000 — 0 last 3 bits of state
0 1 1 0010 [0100 100 0
0 0 - 0100 | 0100 100 O open/closed is
0 ! 0 0100 | 0000 - 0 identical to first bit
0 1 1 0100 | 1000 - 1 of state
0 - - 1000 | 1000 - 1
0 - - 0000 [0000 - 0
CSE370 - I - Introduction 63
Activity

Have lock always wait for 3 key presses exactly before
making a decision

CSE370 - I - Introduction 64

‘ Sequential example (cont’d):
controller implementation

= Implementation of the controller

special circuit element,
called a register, for
remembering inputs

new equal reset

mux when told to by clock
‘ control controller
«—clock
new equal reset
open/closed
mux -
<Wﬂ_Comb. logic
.state ——clock
open/closed
CSE370 - I - Introduction 65
Design hierarchy
system
data-path control
S ers Multiplexer comparator state combinational
registers P P registers logic
register logic
switching
networks

CSE370 - I - Introduction 66

Summary

That was what the entire course is about

o converting solutions to problems into combinational and
sequential networks effectively organizing the design
hierarchically

o doing so with a modern set of design tools that lets us handle
large designs effectively

o taking advantage of optimization opportunities

Now lets do it again
o this time we'll take nine weeks instead of one

CSE370 - I - Introduction

67

