Overview

- ◆ Last lecture
 - deMorgan's theorem
 - NAND and NOR
 - Canonical forms
 - ✓ Sum-of-products (minterms)
- ◆ Today's lecture
 - Logic simplification

 - ∠ Boolean cubes
 ∠ Karnaugh maps

CSE370, Lecture 6

Logic-function simplification

- ♦ Key tool: The uniting theorem \rightarrow A(B'+B) = A
- ◆ The approach:
 - Find subsets of the ON-set where some variables don't change (the A's above) and others do (the B's above)
 Eliminate the changing variables (the B's)

Boolean cubes

◆ Visualize when we can apply the uniting theorem
■ n input variables = n-dimensional "cube"

CSE370, Lecture 6

Mapping truth tables onto Boolean cubes

- ◆ ON set = solid nodes
- ♦ OFF set = empty nodes

BIF 0 0 0 1 0

Subcube (a line) comprises two nodes A varies within the subcube;

B does not This subcube represents the literal B'

CSE370, Lecture 6

Logic minimization using Boolean cubes

- ◆ Uniting theorem = find reduced-dimensionality subcubes
- ◆ Example: Binary full-adder carry-out logic
 - On-set is covered by the OR of three 2-D subcubes

Α	В	Cin	Cout
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Cout = BCin+AB+ACin

CSE370, Lecture 6

M-dimensional cubes in n-dimensional space ◆ In a 3-cube (three variables): ■ A 0-cube (a single node) yields a term in 3 literals A 1-cube (a line of two nodes) yields a term in 2 literals A 2-cube (a plane of four nodes) yields a term in 1 literal A 3-cube (a cube of eight nodes) yields a constant term "1" $F(A,B,C) = \sum m(4,5,6,7)$ On-set forms a square (a 2-D cube)

A is asserted (true) and unchanging B and C varv

This subcube represents the literal A

CSE370, Lecture 6

Karnaugh maps

- ◆ Flat representation of Boolean cubes
 - Easy to use for 2– 4 dimensions
 - Hard for 4 6 dimensions
 - Virtually impossible for 6+ dimensions ✓ Use CAD tools
- ◆ Help visualize adjacencies
 - On-set elements that have one variable changing are adjacent **∠** Unlike a truth-table
 - Visual way to apply the uniting theorem

_B ^A	0	1
0	o ¹	21
1	10	30

A B . 0 0 1 0 1 0 1

1 1 1 0

0 1 1 0

CSE370, Lecture 6

K-map cell numbering

- ◆ Gray-code: Only one bit changes between cells
 - Example: $00 \rightarrow 01 \rightarrow 11 \rightarrow 10$
- ◆ Layout for 2 4 dimension K-maps:

CSE370, Lecture 6

Adjacencies

- ♦ Wrap-around at edges
 - First column to last column
 - Top row to bottom row

CSE370, Lecture 6

K-map minimization: 2 and 3 variables Cout = AB + BCin + ACin $F(A,B,C) = \Sigma m(0,4,5,7)$

CSE370, Lecture 6

K-map minimization (con't)

◆ Obtain the complement by covering 0s with subcubes

 $F(A,B,C) = \Sigma m(0,4,5,7)$ = B'C'+AC

F(A,B,C) = ???

F'(A,B,C) = ???

 $F'(A,B,C) = \Sigma m(1,2,3,6)$

= A'C + BC'

CSE370, Lecture 6

11

K-map minimization: 4 variables

 \bullet Minimize F(A,B,C,D) = Σ m(0,2,3,5,6,7,8,10,11,14,15)

■ Find the least number of subcubes, each as large as possible, that cover the ON-set

CSE370, Lecture 6

12

