Logic gates

- Last lecture
 - Boolean algebra
 - Axioms
 - Useful laws and theorems
 - Simplifying Boolean expressions

- Today’s lecture
 - Logic gates and truth tables
 - Implementing logic functions
 - CMOS switches

Logic gates and truth tables

- AND \(X \cdot Y \)
 - Truth table:
 - \(X \) \(Y \) \(Z \)
 - 0 0 0
 - 0 1 0
 - 1 0 0
 - 1 1 1

- OR \(X + Y \)
 - Truth table:
 - \(X \) \(Y \) \(Z \)
 - 0 0 0
 - 0 1 1
 - 1 0 1
 - 1 1 1

- NOT \(\overline{X} \)
 - Truth table:
 - \(X \) \(\overline{X} \)
 - 0 1
 - 1 0

- Buffer \(X \)
 - Truth table:
 - \(X \) \(Y \)
 - 0 1
 - 1 0

Logic gates and truth tables (con’t)

- NAND \(X \cdot \overline{Y} \)
 - Truth table:
 - \(X \) \(Y \) \(Z \)
 - 0 0 1
 - 0 1 1
 - 1 0 0
 - 1 1 0

- NOR \(X + \overline{Y} \)
 - Truth table:
 - \(X \) \(Y \) \(Z \)
 - 0 0 0
 - 0 1 0
 - 1 0 0
 - 1 1 0

- XOR \(X \oplus Y \)
 - Truth table:
 - \(X \) \(Y \) \(Z \)
 - 0 0 0
 - 0 1 1
 - 1 0 1
 - 1 1 0

- XNOR \(X \equiv Y \)
 - Truth table:
 - \(X \) \(Y \) \(Z \)
 - 0 0 1
 - 0 1 0
 - 1 0 0
 - 1 1 1

Definitions

- Schematic: A drawing of interconnected gates
- Net: Wires at the same voltage (electrically connected)
- Netlist: A list of all the devices and connections in a schematic
- Fan-in: The # of inputs to a gate
- Fan-out: The # of loads the gate drives

Example: A binary full adder

- 1-bit binary adder
 - Inputs: A, B, Carry-in
 - Outputs: Sum, Carry-out
 - Truth table:
 - \(A \) \(B \) \(Cin \) \(S \) \(Cout \)
 - 0 0 0 0 0
 - 0 1 0 1 0
 - 0 1 0 1 1
 - 1 0 0 0 0
 - 1 0 0 0 1
 - 1 1 0 1 0
 - 1 1 0 1 1
 - 1 1 0 1 1
 - 1 1 0 1 1

 - Sum = \(A'B'Cin + AB'Cin' + AB'Cin + ABCin \)
 - Cout = \(A'B'Cin + AB'Cin' + ABCin + ABCin \)
Full adder: Sum

Before Boolean minimization

\[\text{Sum} = A'B'C_{\text{in}} + A'BC_{\text{in}}' + AB'C_{\text{in}}' + ABC_{\text{in}} \]

After Boolean minimization

\[\text{Sum} = \left(A \oplus B \right) \oplus C_{\text{in}} \]

Full adder: Carry-out

Before Boolean minimization

\[\text{Cout} = A'BC_{\text{in}} + AB'C_{\text{in}} + ABC_{\text{in}}' + ABC_{\text{in}} \]

After Boolean minimization

\[\text{Cout} = BC_{\text{in}} + AC_{\text{in}} + AB \]

Preview: A 2-bit ripple-carry adder

Mapping truth tables to logic gates

- Given a truth table
- Write the Boolean expression
- Minimize the Boolean expression
- Draw as gates

\[
\begin{array}{ccc|c}
A & B & C & F \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

- \[F = A'B'C' + A'BC + AB'C + ABC \]
- \[F = A'B(C' + C) + AC(B' + B) \]
- \[F = A'B + AC \]

Many possible mappings

- Many ways to map expressions to gates
- Example: \[Z = A \cdot B \cdot (C + D) = A \cdot B \cdot (C + D) \]

What is the optimal gate realization?

- We use the axioms and theorems of Boolean algebra to "optimize" our designs
- Design goals vary
 - Reduce the number of inputs?
 - Reduce the number of gates?
 - Reduce number of gate levels?
- How do we explore the tradeoffs?
 - CAD tools
 - Logic minimization: Reduce number of gates and complexity
 - Logic optimization: Maximize speed and/or minimize power
Minimal set

- We can implement any logic function from NOT, NOR, and NAND
 - Example: \((X \land Y) = \neg (X \text{ nand } Y)\)
- In fact, we can do it with only NOR or only NAND
 - NOT is just NAND or NOR with two identical inputs
- NAND and NOR are duals: Can implement one from the other
 - \(X \text{ nand } Y = \neg ((\neg X) \text{ nor } (\neg Y))\)
 - \(X \text{ nor } Y = \neg ((\neg X) \text{ nand } (\neg Y))\)

Most digital logic is CMOS

- CMOS technology
 - Complementary Metal-Oxide Semiconductor
 - Transistors act as voltage-controlled switches

Multi-input logic gates

- CMOS logic gates are inverting
 - Get NAND, NOR, NOT
 - Don’t get AND, OR, Buffer