
- 1 -

���������	��
��
���	�
�� � �

TUTORIAL #2 – HIERARCHICAL DESIGNS AND TEST FIXTURES

This tutorial will use the 1-bit full adder you designed in Tutorial #1 to construct larger
adders. This will introduce the concept of hierarchy to use simple components to
construct more complex components. In this tutorial, you will build a 4-bit
adder/subtractor component using the 1-bit full adder you already designed. Since the 4-
bit adder is implemented using another design component, this forms a simple design
hierarchy. A design hierarchy is similar to a procedure call hierarchy in programming
languages. The important difference is that each call or “ instantiation” of a simpler
component by a more complex component actually creates a new instance of the simple
component. After completing this tutorial you will know how to:

�� Design using hierarchy;
�� Test components using test fixtures;
�� Use block symbols in Active-HDL;
�� Use buses;
�� Run simulations with multi-bit signals using a test fixture; and
�� (Optional) Create and connect arrays of components.

Start Active-HDL

1. Open Active-HDL.

2. Select the “Open existing workspace” option and select your workspace from
Tutorial #1 in the window, or click the “More…” button to attach and open it
(Figure 1).

Figure 1

3. Click OK.

* If you have forgotten how to use the “More…” button refer back to Tutorial #1 for directions.

- 2 -

Test Fixtures

What is a test fixture? Test fixtures are used to test and/or simulate a design or a
component of a design. A test fixture is usually generated in Verilog. It drives the input
signals of a design and samples the outputs. We are particularly interested in “self-
checking” test fixtures that check the outputs and report an error automatically so that we
don’t have to look at the waveforms.

Note: Tutorial #3 covers Verilog and how to design your own test fixtures. For this

tutorial, the test fixtures are provided.

Before using components as part of other components, you should test them, just like you
test procedures before using them in programming. In Tutorial #1, you used a simulation
and a waveform to verify your 1-bit full adder. Test fixtures will not eliminate the need to
use the debugging skills you learned in the first tutorial, but they will make verifying the
correctness of a design faster and simpler. This is accomplished by the test fixture’s
ability to send messages to the Console in addition to producing waveforms.

At some point when you have learned Verilog, you will be writing your own test fixtures.
For this tutorial, we will provide you with two test fixture files to test the components
you design. (It’s pretty easy to follow these examples to generate your own Verilog text
fixtures.) The code provided will test a number of cases for each component and print a
series of messages to help you find errors, if any. These messages will be printed to the
Console and a text file.

1. You will need to add the following two files to your design: FA_tf.v (this test
fixture tests a 1-bit full adder), and fourbitA_tf.v (this test fixture tests the 4-bit
adder/subtractor you will design in this tutorial). Double-click “Add New File” in
the Design Browser.

2. Now, click the “Add Existing File” button.

3. Navigate to the class folder, which contains these files, click the “Make local
copy” box, and add the test fixture for the full adder (see Figure 2 on the
following page). Notice it is added to the design hierarchy in the Design Browser.
We use the naming convention: <design name>_tf.v to name test fixtures so that
it is easy to associate test fixtures with the components they test. If you choose
different names for your full adder and 4-bit adder/subtractor, make sure you
rename these test fixtures by right-clicking the file in the Design Browser.

- 3 -

Figure 2

4. Double-click the test fixture in the Design Browser to open this file in the main
window.

5. You do not need to understand the code completely, but read through the code
and try to understand what it is doing and why it is doing it. Figure 3 (on the
following page) shows the code for the full adder test fixture with areas of interest
circled in red. If you renamed the file, change the title and the module name to
reflect this change. (Optional) This test fixture prints its results to a file as well as
the Console by using the “$fopen()” statement. You may change the name of the
text file that the test fixture prints to by changing the name in the parameter of the
fopen statement (see Figure 3). Once you have familiarized yourself with the
code, save it and then compile it. If you choose to modify this file, save the file
after each modification, and recompile it after you have saved it. Repeat this
section to add the test fixture for the 4-bit adder/subtractor component to the
design.

- 4 -

Figure 3

Block Symbols

Active-HDL can create block symbols from your compiled schematic designs and
Verilog source code files in the Symbols Toolbox. We will create block symbols for the
full adder you designed earlier and the full adder test fixture. This portion of the tutorial
will walk you through placing a block symbol for the full adder into a new schematic and
connecting it to a test fixture to ensure that it functions properly.

1. Add a new empty block diagram file called: <design name>_test. Do this by
double-clicking “Add New File” in the Design Browser, select the “Block
Diagram” option under the Empty Files tab, and enter the name in the “Name”
field. Then, click OK.

- 5 -

2. Open the Symbols Toolbox. Find the name of your design, and expand your
design’s part list. You should see a “Units without symbols” list. Expand it and find
the name of your full adder schematic. Select it, and notice that a block symbol
appears in the bottom window of the Symbols Toolbox. Add this part to your
schematic and notice that this component no longer appears in the “Units without
symbols” list.

3. Repeat step 2 to add the symbol for full adder test fixture to the schematic.

4. You can edit block symbols by right clicking the part in the schematic and selecting
the “Edit” option. (Note: if this option is not available, save, close, and reopen the
file and try again.) While in edit mode, you can drag the pins to a new position
within the symbol. Clicking outside of the part will end the edit session, and you
will be prompted to save your changes.

5. The test fixture will drive the input signals of the full adder and test the full adder’s
outputs. Connect the two units using wires. The outputs of the test fixture connect
to the corresponding inputs of the full adder, and the inputs of the test fixture
connect to the corresponding outputs of the full adder (Figure 4).

Figure 4

6. Now that the units are connected, save, run the check diagram tool, and
compile the test schematic.

7. Set the test schematic as the top level, close any waveforms, initialize a
simulation, and run the simulation for 80 ns. If you have forgotten how to do
any of these steps, refer to Tutorial #1.

8. The Console, along with a text file, will contain the results of the simulation.
If all eight cases passed, end the simulation, and continue with the tutorial. If
not, there may be some problems with your full adder (see Tutorial #1 for
examples on how to debug your design).

The correct way to design is to write a test fixture for every component you design. If
you change the design, all you have to do is re-run the test fixture to make sure you
haven’t screwed anything up. As a practical matter, we typically write test fixtures only
when the components get reasonably complicated. Whether we’d write a test fixture for
a full adder is mostly a matter of how optimistic we are. It’s best to assume that you’re
going to make mistakes, and the sooner you find them, the easier your life is going to be.
Additionally, test fixtures come in handy just to drive signals for a waveform simulation.
Imagine a more complicated design with several multi-bit signals. Explicitly setting
stimulators for each bit (which is what you would have to do using stimulators) is time
consuming and can make simulating a design more difficult. See Tutorial #3 for more
information.

- 6 -

Design a 4-bit adder/subtractor component

Figure 5 is an example of the schematic you will be designing in this portion of the
tutorial. You already know how to place parts and connect them. However, this design
uses buses as well as wires, therefore, you will learn how to use and connect buses.
Additionally, you should gain a better understanding of hierarchy.

Figure 5

1. Add a new schematic block diagram file to the design using the block diagram

wizard and then create this schematic just like you created the schematic in
Tutorial #1. The only thing you do not know how to do is to add the ports
(terminals)—specifically the bus ports. You can add these when you first create
the block diagram with the Wizard. Or you can add the terminals in the schematic
afterwards.

2. To add a multi-bit terminal while in the wizard, type in the name of the terminal
and select whether it is an input or output terminal. Now in the “Array Indexes:”
fields, place a 3 in the field on the left (the “to” field), and a 0 in the field on the
right (the “ from” field). You can enter in the numbers or use the arrow buttons to
the right of each field. The fields will read “ from 0 to 3” , or in other words, a 4-bit
port (see Figure 6 on the next page). To add multi-bit terminals in the schematic,
click the drop down arrow next to the Terminals icon in the toolbar. Mouse over
the options, select the desired terminal, and drop it into the schematic. Double-
click the terminal in the design, and adjust the “Index Range:” fields in the
Terminal Properties window (not shown) to the desired number of bits.

- 7 -

Figure 6

3. Using the methods described here and in Tutorial #1, add two 4-bit inputs named

“A” and “B” , add one 1-bit input named “AddSub”, add one 4-bit output named
“S” , and a 1-bit output named “Over” (Figure 7). Then, click Finish.

Figure 7

4. Place the parts from Figure 5 into the design (use the standard class library), and

make the appropriate wire connections. You will find the multiplexor under the
name “MUX2”, and the inverter is under the name “INV”.

Note: The wires connecting the muxes are all connected from the bottom mux. You

can give your design this same appearance by drawing the wires over the
muxes in a chain from the bottom mux to the top. Then right click each wire
and select Order/Send to Back in the pop-up menu.

- 8 -

Using Buses

As you can see in Figure 5, you can use connection by name, as described in Tutorial
#1, for connecting buses as well as wires. This is the simplest method and thus the
method we will use. (There are other ways to create so-called bus taps. Since we
don’t like them, we will not describe them here. But you can (and should) take a look
at the online documentation, which explains other kinds of taps, as well as the method
used in this tutorial. To view the online documentation, go to Help/On-line
Documentation in the menu bar.)

The steps provided below explain how to:

�� Draw buses
�� Name buses
�� Move buses
�� Delete buses

Drawing buses:

1. Click on the Bus icon in the toolbar.
2. Buses work just like wires. The only difference is that a bus contains

several wires, named via indices. Click anywhere in the schematic and
drag to the point where you want the bus to end. Clicking on a port or
terminal will connect an end of the bus to that port or terminal. When
connecting buses to pins and terminals of different width, the bus or the
bus pins are connected so their leftmost bits are aligned. Just like wires,
clicking on an empty space in the schematic will anchor the bus at that
point, and double-clicking an empty space in the schematic will create an
end to the bus at that point.

3. Press the Esc key to return to Select Mode.

Naming buses:

1. Double-click the bus segment to be named. This opens the Bus Properties
window.

2. Type the name of the bus in the “Segment” field, and select the index
range. By default, buses are 8-bits wide when drawn (see Figure 8 on the
next page).

- 9 -

Figure 8

Moving and deleting buses are done the same way as with wires. Remember that
Active-HDL uses the standard Window user-interface to select, move, copy, and
delete items in the schematic.

For this assignment, you only need to know how to extract members of buses
from the input terminals using naming connections and connect wires to multi-bit
output terminals via naming connections as well. However, you can learn how to
use wiretaps, and extract slices from buses by doing the optional portion of this
assignment and reading the online documentation under “Help” in the menu bar.

Simulate the design using a test fixture

Your design should now look like Figure 5. Now you are ready to test your design. In the
“Test Fixtures” section of this tutorial, you learned how to place a block symbol for a
design into a new schematic along with a block symbol for a test fixture and how to edit
block symbols. Now, save, run the check diagram tool, debug (if necessary), and compile
your 4-bit adder/subtractor design and follow the steps described in the “Test Fixtures”
section to connect the block symbol of this design to the 4-bit adder/subtractor test fixture
in a new schematic. Remember to follow the naming convention. The remaining steps
will guide you through running a simulation with your test fixture as well as adding
multi-bit signals to a waveform.

- 10 -

1. Once you have finished connecting the test fixture block symbol to your design’s

block symbol, save, run the check diagram tool, and compile the new schematic.
Your schematic should look like Figure 9.

Figure 9

2. Set this schematic as the top-level, and initialize a simulation.

3. Close any open waveforms and open a new waveform by clicking the New
Waveform icon in the toolbar.

4. With the “Structures” tab active in the Design Browser, expand the list of files
under your new schematic file in the top window of the Design Browser.

5. Selecting the name of your design or the test fixture will show the corresponding
symbol’s signals in the lower window of the Design Browser. Multi-bit signals
are preceded by a plus symbol.

6. Use the same methods you used in Tutorial #1 to add the inputs and outputs from
the 4-bit adder/subtractor component. Notice that if you add a multi-bit signal all
of its bits will be added to the waveform, or you can add specific bits by
expanding the multi-bit signal’s list and add only the desired bit. Your waveform
should look something like Figure 10.

Figure 10

- 11 -

7. Run the simulation for 100 ns. Notice how the waveform shows the decimal
values as well as the bit values for the individual signals (not shown). You could
verify the correctness or incorrectness of your design using the waveform, but this
would be confusing and you could easily miss inconsistencies. To make verifying
your design easier, the test fixture prints the results of the simulation in the
Console and to a file. You may need to scroll up or down to see the results of each
case tested in the Console, or go to your design folder and open the text file
shown in Figure 3, which is located in the “Test Fixtures” section of this tutorial.
Using the outputs and the waveform, verify the correctness of your design. Test
fixtures typically only print errors.

8. Save the waveform using the naming convention <design name>_wv.

9. End the simulation, and close the waveform. You are now finished with the
mandatory portion of the assignment. You may continue to the optional portion
below (recommended), or go to the Concluding Remarks section on the last page.

Again, we want to emphasize the convenience of test fixtures. Running the above
simulation without the test fixture would have required a substantial amount of work
in setting the stimulators for each bit and doing so in a way that you could verify the
correctness by observing the waveforms generated. Thinking in binary is not natural
for most of us, and test fixtures allow us to think in decimal to design tests as opposed
to the bit by bit way of thinking required when using stimulators.

Design a 32-bit adder/subtractor component (Optional)

In this portion of the tutorial, you will design a 32-bit adder/subtractor using a full adder.
Designing this in the same manner we just designed the 4-bit unit would be tedious,
painful and error-prone, even taking advantage of cut-and-paste techniques. Active-HDL,
however, provides the ability to create arrays of components, which will help to make
easy-to-read designs even when these designs consist of many components. Figure 11
shows the final schematic for the thirty-two-bit adder/subtractor component.

Figure 11

1. Using the Block Diagram Wizard, create a new block diagram schematic with two
32-bit inputs named “A” and “B” , one 1-bit input named “AddSub”, one 32-bit
output named “S” , and one 1-bit output named “Over” .

2. Place your full adder component into the newly created schematic.

3. Right click the full adder, and select “Properties” . This will open the Symbol
Properties window.

- 12 -

4. Under the heading “Source file” , select the “Create an array of (#) instances” , and
enter 32 in this field (see Figure 12).

Figure 12

5. Under the “View Texts” tab (shown in Figure 12), check the box next to the
“Array Value” option. Then click the OK button.

6. Place an inverter and a 2:1 multiplexer from the standard class library into the
schematic and repeat the above steps to create arrays of 32 for each component.

7. Use buses to connect the arrays of components to each other. When connecting
the inverter to the multiplexer and the multiplexer to the full adder, you will need
to name the buses and set their width to 32. Remember, buses by default are 8-bits
and need to be named in order to adjust their width. (Refer back to Figure 11.)

8. The bus that connects to the carry-in of the full adder is called a slice. Double-
click the bus to bring up the Bus Properties window. In the “Segment:” field,
enter the slices of the buses and/or wires separated by a comma with no spaces.

Figure 13

- 13 -

9. Use wires to connect the xor gate to the proper carryout bits, and to connect the
AddSub signal to the multiplexer.

10. Save the schematic, run the check diagram tool, and compile the schematic.

11. Using the steps outlined in this tutorial, place a block symbol for the 32-bit
adder/subtractor component into a new schematic. For this part of the tutorial, we
will provide you with a “real” test fixture. This test fixture will test 100 random
cases and print the results. The printed results simply show whether the
component passed or not. If not, it will print the number of errors.

12. Navigate to the class folder and locate the optional test fixture. Add it to the
project, place the block symbol for this test fixture into the schematic, connect the
two components together, and run a simulation as you did for the full adder and 4-
bit adder/subtractor components. Why is this not a good test fixture?

Concluding Remarks

You should now understand bottom-up designing and hierarchy. If you took the time to
do the optional portion of this tutorial (we highly recommend you do), then you also
know how to make easy-to-read schematic designs even when the design contains many
components. Continue to experiment with Active-HDL, and begin to read and try to
understand the Verilog code we provided you with for this tutorial.

Remember to check with the Active-HDL Tips webpage for helpful information on
known bugs and shortcuts. Additionally, we would appreciate your suggestions for
improvements/additions to the tutorials and the Active-HDL Tips webpage. Email your
comments to your instructor or the Hardware Lab manager.

