
Autumn 2003 CSE370 - XI - Computer Organization 1

Computer organization

Computer design – an application of digital logic design procedures
Computer = processing unit + memory system
Processing unit = control + datapath
Control = finite state machine

inputs = machine instruction, datapath conditions
outputs = register transfer control signals, ALU operation codes
instruction interpretation = instruction fetch, decode, execute

Datapath = functional units + registers
functional units = ALU, multipliers, dividers, etc.
registers = program counter, shifters, storage registers

Autumn 2003 CSE370 - XI - Computer Organization 2

central processing
unit (CPU)

instruction unit
– instruction fetch and
interpretation FSM

execution unit
– functional units
and registers

address

read/write

data

Processor Memory
System

Structure of a computer

Block diagram view

control signals

data conditions
Data PathControl

Autumn 2003 CSE370 - XI - Computer Organization 3

LD asserted during a lo-to-hi clock
transition loads new data into FFs

OE asserted causes FF state to be
connected to output pins; otherwise they

are left unconnected (high impedance)

OE

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

LD

D7
D6
D5
D4
D3
D2
D1
D0 CLK

Registers

Selectively loaded – EN or LD input
Output enable – OE input
Multiple registers – group 4 or 8 in parallel

Autumn 2003 CSE370 - XI - Computer Organization 4

Register transfer

Point-to-point connection
dedicated wires
muxes on inputs of
each register

Common input from multiplexer
load enables
for each register
control signals
for multiplexer

Common bus with output enables
output enables and load
enables for each register

rt

MUX

rs

MUX

rd

MUX

R4

MUX

rs

MUX

rt rd R4

BUS

rs rt rd R4

Autumn 2003 CSE370 - XI - Computer Organization 5

RE
RB
RA

WE
WB
WA

D3
D2
D1
D0

Q3
Q2
Q1
Q0

Register files

Collections of registers in one package
two-dimensional array of FFs
address used as index to a particular word
can have separate read and write addresses so can do both at same time

4 by 4 register file
16 D-FFs
organized as four words of four bits each
write-enable (load)
read-enable (output enable)

Autumn 2003 CSE370 - XI - Computer Organization 6

RD

WR

A9
A8
A7
A6
A5
A4
A3
A2
A2
A1
A0

IO3
IO2
IO1
IO0

Memories

Larger collections of storage elements
implemented not as FFs but as much more efficient latches
high-density memories use 1 to 5 switches (transitors) per memory bit

Static RAM – 1024 words each 4 bits wide
once written, memory holds forever (not true for denser dynamic RAM)
address lines to select word (10 lines for 1024 words)
read enable

same as output enable
often called chip select
permits connection of many
chips into larger array

write enable (same as load enable)
bi-directional data lines

output when reading, input when writing

Autumn 2003 CSE370 - XI - Computer Organization 7

Instruction sequencing

Example – an instruction to
add the contents of two registers (Rx and Ry)
and place result in a third register (Rz)
Step 1: get the ADD instruction from memory into an instruction register
Step 2: decode instruction

instruction in IR has the code of an ADD instruction
register indices used to generate output enables for registers Rx and Ry
register index used to generate load signal for register Rz

Step 3: execute instruction
enable Rx and Ry output and direct to ALU
setup ALU to perform ADD operation
direct result to Rz so that it can be loaded into register

Autumn 2003 CSE370 - XI - Computer Organization 8

Instruction types

Data manipulation
add, subtract
increment, decrement
multiply
shift, rotate
immediate operands

Data staging
load/store data to/from memory
register-to-register move

Control
conditional/unconditional branches in program flow
subroutine call and return

Autumn 2003 CSE370 - XI - Computer Organization 9

Elements of the control unit (aka instruction unit)

Standard FSM elements
state register
next-state logic
output logic (datapath/control signalling)
Moore or synchronous Mealy machine to avoid loops unbroken by FF

Plus additional "control" registers
instruction register (IR)
program counter (PC)

Inputs/outputs
outputs control elements of data path
inputs from data path used to alter flow of program (test if zero)

Autumn 2003 CSE370 - XI - Computer Organization 10

Reset

Initialize
Machine

Register-
to-Register

Branch
Not Taken

Branch
Taken

Instruction execution

Control state diagram (for each diagram)
reset
fetch instruction
decode
execute

Instructions partitioned into three classes
branch
load/store
register-to-register

Different sequence through
diagram for each
instruction type

Init

Fetch
Instr.

XEQ
Instr.

Load/
StoreBranch

Incr.
PC

Autumn 2003 CSE370 - XI - Computer Organization 11

Cin

Ain
Bin Sum

Cout

FA

HA
Ain

Bin

Sum

Cin
CoutHA

Data path (hierarchy)

Arithmetic circuits constructed
in hierarchical and modular fashion

each bit in datapath
is functionally identical
4-bit, 8-bit, 16-bit, 32-bit datapaths

Autumn 2003 CSE370 - XI - Computer Organization 12

16 16

A B

S ZN

Operation

16

Data path (ALU)

ALU block diagram
input: data and operation to perform
output: result of operation and status information

Autumn 2003 CSE370 - XI - Computer Organization 13

16

Z

N

OP

16

ACREG

16

16

Data path (ALU + registers)

Accumulator
special register
one of the inputs to ALU
output of ALU stored back in accumulator

One-address instructions
operation and address of one operand
other operand and destination
is accumulator register
AC <– AC op Mem[addr]
"single address instructions”
(AC implicit operand)

Multiple registers
part of instruction used
to choose register operands

Autumn 2003 CSE370 - XI - Computer Organization 14
2 bits wide1 bit wide

Data path (bit-slice)

Bit-slice concept – replicate to build n-bit wide datapaths

CO CIALU

AC

R0

from
memory

rs

rt

rd

CO ALU

AC

R0

from
memory

rs

rt

rd

CIALU

AC

R0

from
memory

rs

rt

rd

Autumn 2003 CSE370 - XI - Computer Organization 15

Instruction path

Program counter (PC)
keeps track of program execution
address of next instruction to read from memory
may have auto-increment feature or use ALU

Instruction register (IR)
current instruction
includes ALU operation and address of operand
also holds target of jump instruction
immediate operands

Relationship to data path
PC may be incremented through ALU
contents of IR may also be required as input to ALU – immediate operands

Autumn 2003 CSE370 - XI - Computer Organization 16

Data path (memory interface)

Memory
separate data and instruction memory (Harvard architecture)

two address busses, two data busses
single combined memory (Princeton architecture)

single address bus, single data bus
Separate memory

ALU output goes to data memory input
register input from data memory output
data memory address from instruction register
instruction register from instruction memory output
instruction memory address from program counter

Single memory
address from PC or IR
memory output to instruction and data registers
memory input from ALU output

Autumn 2003 CSE370 - XI - Computer Organization 17

Control
FSM

16 16

Z

N

OP

16

ACREG

16
load
path

store
path

Data Memory
(16-bit words)

16 16

OP

16

PCIR

16

data

addr

rd wr

Inst Memory
(8-bit words)

data

addr

Block diagram of processor (Harvard)

Register transfer view of Harvard architecture
which register outputs are connected to which register inputs
arrows represent data-flow, other are control signals from control FSM
two MARs (PC and IR)
two MBRs (REG and IR)
load control for each register

Autumn 2003 CSE370 - XI - Computer Organization 18

16

Z

N

OP

8

ACREG
16

16
load
path

store
path

Data Memory
(16-bit words)

16

OP

16

PCIR

16

16

data

addr

rd wr

MARControl
FSM

Block diagram of processor (Princeton)

Register transfer view of Princeton architecture
which register outputs are connected to which register inputs
arrows represent data-flow, other are control signals from control FSM
MAR may be a simple multiplexer rather than separate register
MBR is split in two (REG and IR)
load control for each register

Autumn 2003 CSE370 - XI - Computer Organization 19

A simplified processor data-path and memory

Princeton architecture
Register file
Instruction register
PC incremented
through ALU
Modeled after
MIPS rt000
(used in 378
textbook by
Patterson &
Hennessy)

really a 32-bit
machine
we’ll do a 16-bit
version

Autumn 2003 CSE370 - XI - Computer Organization 20

Processor control

Synchronous Mealy or Moore machine
Multiple cycles per instruction

Autumn 2003 CSE370 - XI - Computer Organization 21

Processor instructions

Three principal types (16 bits in each instruction)
type op rs rt rd funct
R(egister) 3 3 3 3 4
I(mmediate) 3 3 3 7
J(ump) 3 13

Some of the instructions

add 0 rs rt rd 0 rd = rs + rt
sub 0 rs rt rd 1 rd = rs - rt
and 0 rs rt rd 2 rd = rs & rt
or 0 rs rt rd 3 rd = rs | rt
slt 0 rs rt rd 4 rd = (rs < rt)
lw 1 rs rt offset rt = mem[rs + offset]
sw 2 rs rt offset mem[rs + offset] = rt
beq 3 rs rt offset pc = pc + offset, if (rs == rt)
addi 4 rs rt offset rt = rs + offset
j 5 target address pc = target address
halt 7 - stop execution until reset

R

I

J

Autumn 2003 CSE370 - XI - Computer Organization 22

Tracing an instruction's execution

Instruction: r3 = r1 + r2
R 0 rs=r1 rt=r2 rd=r3 funct=0

1. instruction fetch
move instruction address from PC to memory address bus
assert memory read
move data from memory data bus into IR
configure ALU to add 1 to PC
configure PC to store new value from ALUout

2. instruction decode
op-code bits of IR are input to control FSM
rest of IR bits encode the operand addresses (rs and rt)

these go to register file

Autumn 2003 CSE370 - XI - Computer Organization 23

Tracing an instruction's execution (cont’d)

Instruction: r3 = r1 + r2
R 0 rs=r1 rt=r2 rd=r3 funct=0

3. instruction execute
set up ALU inputs
configure ALU to perform ADD operation
configure register file to store ALU result (rd)

Autumn 2003 CSE370 - XI - Computer Organization 24

Tracing an instruction's execution (cont’d)

Step 1

Autumn 2003 CSE370 - XI - Computer Organization 25

Tracing an instruction's execution (cont’d)

Step 2

to controller

Autumn 2003 CSE370 - XI - Computer Organization 26

Tracing an instruction's execution (cont’d)

Step 3

Autumn 2003 CSE370 - XI - Computer Organization 27

Register-transfer-level description

Control
transfer data between registers by asserting appropriate control signals

Register transfer notation - work from register to register
instruction fetch:

mabus ← PC; – move PC to memory address bus (PCmaEN, ALUmaEN)
memory read; – assert memory read signal (mr, RegBmdEN)
IR ← memory; – load IR from memory data bus (IRld)
op ← add – send PC into A input, 1 into B input, add

(srcA, srcB0, scrB1, op)
PC ← ALUout – load result of incrementing in ALU into PC (PCld, PCsel)

instruction decode:
IR to controller
values of A and B read from register file (rs, rt)

instruction execution:
op ← add – send regA into A input, regB into B input, add

(srcA, srcB0, scrB1, op)
rd ← ALUout – store result of add into destination register

(regWrite, wrDataSel, wrRegSel)

Autumn 2003 CSE370 - XI - Computer Organization 28

Register-transfer-level description (cont’d)

How many states are needed to accomplish these transfers?
data dependencies (where do values that are needed come from?)
resource conflicts (ALU, busses, etc.)

In our case, it takes three cycles
one for each step
all operation within a cycle occur between rising edges of the clock

How do we set all of the control signals to be output by the state machine?
depends on the type of machine (Mealy, Moore, synchronous Mealy)

Autumn 2003 CSE370 - XI - Computer Organization 29

Review of FSM timing

step 1 step 2 step 3

fetch decode execute

IR ← mem[PC];
PC ← PC + 1;

rd ← A + BA ← rs
B ← rt

to configure the data-path to do this here,
when do we set the control signals?

Autumn 2003 CSE370 - XI - Computer Organization 30

instruction
execution

instruction
decode

LW
SW ADD J

reset

FSM controller for CPU (skeletal Moore FSM)

First pass at deriving the state diagram (Moore machine)
these will be further refined into sub-states

instruction
fetch

Autumn 2003 CSE370 - XI - Computer Organization 31

FSM controller for CPU (reset and inst. fetch)

Assume Moore machine
outputs associated with states rather than arcs

Reset state and instruction fetch sequence
On reset (go to Fetch state)

start fetching instructions
PC will set itself to zero

mabus ← PC;
memory read;
IR ← memory data bus;
PC ← PC + 1;

reset

instruction
fetchFetch

Autumn 2003 CSE370 - XI - Computer Organization 32

FSM controller for CPU (decode)

Operation decode state
next state branch based on operation code in instruction
read two operands out of register file

what if the instruction doesn’t have two operands?

instruction
decodeDecode

branch based on value of
Inst[15:13] and Inst[3:0]

add

Autumn 2003 CSE370 - XI - Computer Organization 33

FSM controller for CPU (instruction execution)

For add instruction
configure ALU and store result in register

rd ← A + B

other instructions may require multiple cycles

instruction
executionadd

Autumn 2003 CSE370 - XI - Computer Organization 34

FSM controller for CPU (add instruction)

Putting it all together
and closing the loop

the famous
instruction
fetch
decode
execute
cycle

reset

instruction
fetchFetch

instruction
decodeDecode

add
instruction
executionadd

Autumn 2003 CSE370 - XI - Computer Organization 35

FSM controller for CPU

Now we need to repeat this for all the instructions of our
processor

fetch and decode states stay the same
different execution states for each instruction

some may require multiple states if available register transfer paths
require sequencing of steps

