Computer organization

= Computer design — an application of digital logic design procedures
= Computer = processing unit + memory system
= Processing unit = control + datapath
= Control = finite state machine
o inputs = machine instruction, datapath conditions
o outputs = register transfer control signals, ALU operation codes
o instruction interpretation = instruction fetch, decode, execute
= Datapath = functional units + registers
o functional units = ALU, multipliers, dividers, etc.
o registers = program counter, shifters, storage registers

Autumn 2003 CSE370 - XI - Computer Organization

Structure of a computer

= Block diagram view

y

address

/\
Processor M
[g\ _/

central processing
unit (CPU)

control signals
data conditions,
instruction unit execution unit

— instruction fetch and — functional units
interpretation FSM and registers

Autumn 2003 CSE370 - XI - Computer Organization

Registers

Selectively loaded — EN or LD input
Output enable — OE input
Multiple registers — group 4 or 8 in parallel

——ILD OE——

D7 7 OE asserted causes FF state to be
——1D6 6—— connected to output pins; otherwise they
e 8‘5‘ :5‘— are left unconnected (high impedance)
——|D3 33—
— D2 22— LD asserted during a lo-to-hi clock
— D1 1 transition loads new data into FFs
—D0 Lk o——

Autumn 2003 CSE370 - XI - Computer Organization 3

Register transfer

Point-to-point connection l L 17 17 7
o dedicated wires Lmux || MTX | MTX | [MUx |
o muxes on inputs of | | | " | | g | | R4 |

each register rs | r
Common input from multiplexer | I I
a load enable§ | rs | | rt | | rd | | R4 |
for each register l l l
2 control signals | MUX |
for multiplexer i
Common bus with output enables I I

o output enables and load | rs | | ,l»t | | rd | | R4 |
enables for each register I

Autumn 2003 CSE370 - XI - Computer Organization 4

Register files

Collections of registers in one package

o two-dimensional array of FFs

o address used as index to a particular word
o can have separate read and write addresses so can do both at same time
4 by 4 register file

Q

16 D-FFs

o organized as four words of four bits each
o write-enable (load) — EE
o read-enable (output enable) —/RA
—WE —
WB —
WA —
— D3
— D2
(D1
— DO
Autumn 2003 CSE370 - XI - Computer Organization 5
Memories

Larger collections of storage elements
implemented not as FFs but as much more efficient latches
o high-density memories use 1 to 5 switches (transitors) per memory bit
Static RAM — 1024 words each 4 bits wide
once written, memory holds forever (not true for denser dynamic RAM)
address lines to select word (10 lines for 1024 words)

Q

Q

Q

Q

read enable

same as output enable
often called chip select

permits connection of many
chips into larger array

write enable (same as load enable)
bi-directional data lines
output when reading, input when writing

Autumn 2003

CSE370 - XI - Computer Organization

6

Instruction sequencing

Example — an instruction to

add the contents of two registers (Rx and Ry)

and place result in a third register (Rz)

Step 1: get the ADD instruction from memory into an instruction register
Step 2: decode instruction

o instruction in IR has the code of an ADD instruction

o register indices used to generate output enables for registers Rx and Ry
o register index used to generate load signal for register Rz

Step 3: execute instruction

o enable Rx and Ry output and direct to ALU

o setup ALU to perform ADD operation

o direct result to Rz so that it can be loaded into register

Autumn 2003 CSE370 - XI - Computer Organization 7

Instruction types

Data manipulation

add, subtract

increment, decrement

multiply

shift, rotate

immediate operands

Data staging

o load/store data to/from memory
o register-to-register move
Control

o conditional/unconditional branches in program flow
o subroutine call and return

0O 0 0O 0 O

Autumn 2003 CSE370 - XI - Computer Organization 8

Elements of the control unit (aka instruction unit)

Standard FSM elements

o state register

o next-state logic

o output logic (datapath/control signalling)

o Moore or synchronous Mealy machine to avoid loops unbroken by FF
Plus additional "control" registers

o instruction register (IR)

o program counter (PC)

Inputs/outputs

o outputs control elements of data path

o inputs from data path used to alter flow of program (test if zero)

Autumn 2003 CSE370 - XI - Computer Organization 9

Instruction execution

Control state diagram (for each diagram) Reset
o reset
a fetch instruction Init
o decode Mitialize
o execute

Instructions partitioned into three classes

o branch

o load/store

o register-to-register
Different sequence through
diagram for each
instruction type Branch

Register-
to-Register

Autumn 2003 CSE370 - XI - Computer Organization 10

Data path (hierarchy)

. L . Ci
Arithmetic circuits constructed lm
in hierarchical and modular fashion)
o each bit in datapath é:,? FA Sum
is functionally identical
o 4-bit, 8-bit, 16-bit, 32-bit datapaths Cout
Ain Sum
) HA
Bin| —

_|:D Cout

// T

)
=

Autumn 2003 CSE370 - XI - Computer Organization

Data path (ALU)

ALU block diagram
o input: data and operation to perform
o output: result of operation and status information

Operation \

N S Z

Autumn 2003 CSE370 - XI - Computer Organization

Data path (ALU + registers)

Accumulator

o special register

a one of the inputs to ALU

o output of ALU stored back in accumulator
One-address instructions

o operation and address of one operand 16

o other operand and destination
is accumulator register | REG | | AC |

o AC <- AC op Mem[addr] 16 16

o "single address instructions”
(AC implicit operand) oP

Multiple registers

o part of instruction used ‘1\7 16 |

to choose register operands 7
Autumn 2003 CSE370 - XI - Computer Organization 13

Data path (bit-slice)

Bit-slice concept — replicate to build n-bit wide datapaths

CO «—ALU Cl CO «—ALU ALU Cl
I I I
— AC +—1 AC —1 AC
— RO [— RO [— RO [
— rs [— rs [— rs [
— rd [— rd [— rd [
from from from
[memory [memory [memory
1 bit wide 2 bits wide

Autumn 2003 CSE370 - XI - Computer Organization 14

Instruction path

Program counter (PC)

o keeps track of program execution

o address of next instruction to read from memory
o may have auto-increment feature or use ALU
Instruction register (IR)

o current instruction

o includes ALU operation and address of operand
o also holds target of jump instruction

o immediate operands

Relationship to data path

o PC may be incremented through ALU

o contents of IR may also be required as input to ALU — immediate operands

Autumn 2003 CSE370 - XI - Computer Organization

Data path (memory interface)

Memory
o separate data and instruction memory (Harvard architecture)
two address busses, two data busses
o single combined memory (Princeton architecture)
single address bus, single data bus
Separate memory
ALU output goes to data memory input
register input from data memory output
data memory address from instruction register
instruction register from instruction memory output
o instruction memory address from program counter
Single memory
o address from PC or IR
o memory output to instruction and data registers
o memory input from ALU output

0O 0 o o

Autumn 2003 CSE370 - XI - Computer Organization

16

Block diagram of processor (Harvard)

= Register transfer view of Harvard architecture
which register outputs are connected to which register inputs
arrows represent data-flow, other are control signals from control FSM

0 0o oo

Autumn 2003

two MARs (PC and IR)
two MBRs (REG and IR)
load control for each register

Control
FSM

load
path
N rd wr
storers | sdata
Data Memory
16-bit words|
addr
16
1
L r | [ke data
1 16 Inst Memory
5 =d (8-bit words
_,&L' addr

CSE370 - XI - Computer Organization

Block diagram of processor (Princeton)

= Register transfer view of Princeton architecture
which register outputs are connected to which register inputs

a
a
[m]
[m]
[m]

Autumn 2003

arrows represent data-flow, other are control signals from control FSM

MAR may be a simple multiplexer rather than separate register

MBR is split in two (REG and IR)

load control for each register

load

16

—

Control
FSM

CSE370 - XTI - Computer Organizati

path

L

rd wr
16 store
Ai/ path[: gat;a "
ata Memory
2PN 16-bit words
N] addr
z MAR
16
(.
4t 16 /i’ 16

A simplified processor data-path and memory

Princeton architecture
Register file
Instruction register

PC incremented
through ALU
Modeled after
MIPS rt000
(used in 378
textbook by
Patterson &
Hennessy)
really a 32-bit
machine

we’ll do a 16-bit
version

Q

Autumn 2003

Flzel reset PL14

Flael zeset 1d

Inst

regirite

BT}

wrDataiel
wrBieglel

Tegirite |wiBegiel
wrDatalel
Inst

Regh
ALU:e Reg
Regh

MER File

Jemx

Lo

Lot

CSE370 - XI - Computer Organization

19

Processor control

Synchronous Mealy or Moore machine
Multiple cycles per instruction

1-, TEsEt
0 -

neg

ZEro

Inst ._

Controller

reset

neg

ZETO

Inst

Ee gEmdEH
AL1kaER
PLmaEH
L]

mr

Pr14
Plsel
wrBegiel
wrlataiel
regirite
IEl4d
MER14

o

rrcEL
rrcEl
sTCA

I

| EegEmdER
— ALUmaEH
| — PCmaEH
— riwa

— mr

| PC14

| Flsel
|— wrERegiel
| mrDataiel
| regilrite
— IE1d
— MEE14

OF)

| srcEL
|—y srcEl

— srcd

||:1]|:

Autumn 2003

CSE370 - XI -

Computer Organization

20

Processor instructions

= Three principal types (16 bits in each instruction)

type op rs rt rd funct
R(egister) 3 3 3 3] 4
I(mmediate) | 3 3 3 7
J(ump) 3 13
= Some of the instructions
add 0 rs rt rd 0 rd=rs +rt
R | sub 0 rs rt rd 1 rd=rs-rt
and 0 rs rt rd 2 rd=rs &rt
or 0 rs rt rd 3 rd=rs|rt
slt 0 rs rt rd 4 rd = (rs <rt)
Iw 1 rs rt offset rt = mem[rs + offset]
I sw 2 rs rt offset mem[rs + offset] = rt
beq 3 rs rt offset pc = pc + offset, if (rs == rt)
addi 4 rs rt offset rt = rs + offset
3 j 5 target address pc = target address
halt 7 - stop execution until reset
Autumn 2003 CSE370 - XI - Computer Organization 21

Tracing an instruction's execution

= Instruction: r3=r1+r2
R [0 [rs=r1 | rt=r2 | rd=r3 [funct=0 |
1. instruction fetch
o move instruction address from PC to memory address bus
o assert memory read
o move data from memory data bus into IR
o configure ALU to add 1 to PC
a
2
Q
Q

configure PC to store new value from ALUout
. instruction decode
op-code bits of IR are input to control FSM

rest of IR bits encode the operand addresses (rs and rt)
= these go to register file

Autumn 2003 CSE370 - XI - Computer Organization 22

Tracing an instruction's execution (cont’d)

= Instruction: r3=r1+r2

R [0 [rs=r1 | rt=r2 | rd=r3

[funct=0 |

3. instruction execute

o setup ALU inputs

o configure ALU to perform ADD operation

o configure register file to store ALU result (rd)

Autumn 2003 CSE370 - XI - Computer Organization

23

Tracing an instruction's execution (cont’d)

= Step 1

mrlataiel
regirite wrhegiel

=

regirite [wrBiegiel
wrllataiel

Bega
ErgE

= It
{ = 2LVt REGY
R File

I_: 1k

l:u(

Autumn 2003

24

Tracing an instruction's execution (cont’d)

Flsel reset FL14

o M
u H
Step 2 Plrel zerer 14 PrmaEl g £ l’IRld
Inst b
FC mdbas In,
ALt
I |
1k
= 14
-
mdtras
clk
wrlataiel m
regilTite wrkegiel FEE l’ OPT meIo
=g
regilrite |wrRegiel FL] g
Datagsl B B ig
T R
Ee
ALDenrt Reg’ AL ALUcagt. L1
- En
MEE File =
EegE %“3 L J_:uc
Ine BB
clk l l
— srcEL® trrcEd
S
FARIEE
Tr.i
Autumn 2003

25
to controller

Tracing an instruction's execution (cont’d)

Pfsel reset Pr14

= Step 3

Plsel reset 14 l’IRld
ol

Inst

-
mdtas I,

[:u(
]‘l{BBld

T
—
mdbay BT —

I_: 1k

ALlgagt. LT

l:u(

Autumn 2003 26

Register-transfer-level description

Control
o transfer data between registers by asserting appropriate control signals

Register transfer notation - work from register to register

o instruction fetch:
mabus <~ PC; — move PC to memory address bus (PCmaEN, ALUmaEN)

memory read; — assert memory read signal (mr, RegBmdEN)
IR <~ memory; - load IR from memory data bus (IRId)
op « add —send PC into A input, 1 into B input, add

(srcA, srcBO, scrB1, op)
PC « ALUout - load result of incrementing in ALU into PC (PCld, PCsel)
o instruction decode:
IR to controller
values of A and B read from register file (rs, rt)

o instruction execution:

op « add —send regA into A input, regB into B input, add
(srcA, srcBO0, scrB1, op)
rd < ALUout — store result of add into destination register

(regWrite, wrDataSel, wrRegSel)

Autumn 2003 CSE370 - XI - Computer Organization 27

Register-transfer-level description (cont’d)

How many states are needed to accomplish these transfers?

o data dependencies (where do values that are needed come from?)

o resource conflicts (ALU, busses, etc.)

In our case, it takes three cycles

o one for each step

o all operation within a cycle occur between rising edges of the clock

How do we set all of the control signals to be output by the state machine?
o depends on the type of machine (Mealy, Moore, synchronous Mealy)

Autumn 2003 CSE370 - XI - Computer Organization 28

Review of FSM timing

fetch decode execute
A A A
I [step 1 i step 2 i step 3 i I
IR <~ mem[PC];# A<« rs rd«A+B
I TPC(—PC+1;T Be«rt T I T

to configure the data-path to do this here,
when do we set the control signals?

Autumn 2003 CSE370 - XI - Computer Organization 29

FSM controller for CPU (skeletal Moore FSM)

= First pass at deriving the state diagram (Moore machine)
o these will be further refined into sub-states

reset

instruction
fetch

instruction
decode

instruction
execution

Autumn 2003 CSE370 - XI - Computer Organization 30

FSM controller for CPU (reset and inst. fetch)

Assume Moore machine

o outputs associated with states rather than arcs
Reset state and instruction fetch sequence
On reset (go to Fetch state)

o start fetching instructions

o PC will set itself to zero I

mabus « PC; \‘

instruction
memory read; fetch

IR « memory data bus;
PC « PC+1;

Autumn 2003 CSE370 - XI - Computer Organization 31

FSM controller for CPU (decode)

Operation decode state
o next state branch based on operation code in instruction

o read two operands out of register file
what if the instruction doesn’t have two operands?

3 instruction

branch based on value of decode

Inst[15:13] and Inst[3:0]

J@ 000

Autumn 2003 CSE370 - XI - Computer Organization 32

FSM controller for CPU (instruction execution)

For add instruction
o configure ALU and store result in register

rd«~A+B

o other instructions may require multiple cycles

instruction
execution

Autumn 2003 CSE370 - XI - Computer Organization 33

FSM controller for CPU (add instruction)

Putting it all together
and closing the loop

o the famous reset
instruction \
fetch instruction
fetch
decode
execute

cycle
3 instruction

decode
instruction
execution

Autumn 2003 CSE370 - XI - Computer Organization 34

FSM controller for CPU

Now we need to repeat this for all the instructions of our
processor
o fetch and decode states stay the same

o different execution states for each instruction

some may require multiple states if available register transfer paths
require sequencing of steps

Autumn 2003 CSE370 - XI - Computer Organization 35

