Combinational Logic Technologies

Standard gates

o gate packages

o cell libraries

Regular logic

o multiplexers

o decoders

Two-level programmable logic
o PALs

o PLAs

o ROMs
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Random logic

Transistors quickly integrated into logic gates (1960s)
Catalog of common gates (1970s)
o Texas Instruments Logic Data Book — the yellow bible
o all common packages listed and characterized (delays, power)
o typical packages:
in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates
Today, very few parts are still in use
However, parts libraries exist for chip design
o designers reuse already characterized logic gates on chips
o same reasons as before

o difference is that the parts don’t exist in physical inventory —
created as needed
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Random logic

Too hard to figure out exactly what gates to use
o map from logic to NAND/NOR networks
o determine minimum number of packages
slight changes to logic function could decrease cost
Changes to difficult to realize
o need to rewire parts
o may need new parts
o design with spares (few extra inverters and gates on every board)
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Regular logic

Need to make design faster
Need to make engineering changes easier to make

Simpler for designers to understand and map to functionality
o harder to think in terms of specific gates
o better to think in terms of a large multi-purpose block

Autumn 2003 CSE370 - IV - Combinational Logic Technologies




Making connections

= Direct point-to-point connections between gates
o wires we've seen so far

= Route one of many inputs to a single output --- multiplexer
= Route a single input to one of many outputs --- demultiplexer

R | o
— e

multiplexer demultiplexer 4x4 switch
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Mux and demux

= Switch implementation of multiplexers and demultiplexers
o can be composed to make arbitrary size switching networks

o used to implement multiple-source/multiple-destination
interconnections
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Mux and demux (cont'd)

Uses of multiplexers/demultiplexers in multi-point connections

Alo Al BO Bll
Sa— mux | | MUX [— Sb  multiple input sources
A B
Sum
Ss 4@ multiple output destinations
S0 S1
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Multiplexers/selectors

Multiplexers/selectors: general concept

o 2" data inputs, n control inputs (called "selects"), 1 output

o used to connect 2" points to a single point

o control signal pattern forms binary index of input connected to

output NE L I, Az

0 |1 0 0 0|0

Z=A IO +A 11 0 0 0 1 0
1|

0 1 0|1

0 1 1|0

1 0 0|0

functional form i 0 1|1

logical form 1 1 0 |1

two alternative forms 11 11

for a 2:1 Mux truth table
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Multiplexers/selectors (cont'd)

2:1 mux;
4:1 mux:
8:1 mux:

o in minterm shorthand form for a 2":1 Mux

Z=Al, +Al,
Z = A'B'l, + ABI, + AB'l, + ABI,
Z = A'B'C'l, + AB'CI, + ABC'l, + ABCI, +

AB'C'l, + AB'CI, + ABC'l, + ABCI,

10— 2:1
I1—| mux

A
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n
In general: Z = Zi=(;1(mk|k)

10—
11—
12—
13—

4:1
mux

kb

10—
11—
22—
13—
14—
I5—
16—
17—

8:1
mux

Ab!

Gate level implementation of muxes

= 4:1 mux
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Cascading multiplexers

Large multiplexers can be made by cascading smaller ones

10— 8:1
I1—r 41 mux
2 :: mux 1 alternative
I3 2T 11,5, implementation
14 —p mux 10_[r—71 o1
5—p 41 I mux mux
16— mu
17 — 2_ L7 L,
B & mux |1 41
B C A 4 mux (T2
—of 20| | |
L& mix
control signals B and C simultaneously choose
one of 10, I1, 12, I3 and one of 14, 15, 16, 17 16 | 2i1
I7 2 mux
control signal A chooses which of the
upper or lower mux's output to gate to Z c A B
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Multiplexers as general-purpose logic

A 2":1 multiplexer can implement any function of n variables
o with the variables used as control inputs and
o the data inputs tied to 0 or 1
o in essence, a lookup table

Example: 1 —<1)
2 F(A,B,C) =m0 + m2 + m6 + m7 * 2
= ABC'+ABC +ABC' +ABC 0 —|3 .
= A'B'C'(1) + AB'C(0) O PRt
+ A'BC'(1) + ABC(0) 1
+ AB'C'(0) + AB'C(0) 1 7 o o
+ ABC'(1) + ABC(1) T
A B C

Z=AB'C'l,+ABCl, + ABC'l, + ABCI, +
AB'C'l, + AB'Cl, + ABC'l; + ABCI,
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Multiplexers as general-purpose logic (cont’d)

A 214 multiplexer can implement any function of n variables
o with n-1 variables used as control inputs and
o the data inputs tied to the last variable or its complement
Example:

o F(A,B,C) =m0+ m2 + m6 + m7
=A'B'C' + ABC' + ABC' + ABC
= A'B'(C") + A'B(C") + AB'(0) + AB(1)

1 —0
0 —1 A B C|F
1 —2 0 00 [T & oo
0o 13 0 0 |1 ]o0 - E
0 |4 g1mux — F o 1 [0 14 o _lp #TMUX | —
o _Is 0 1|1 ]o 1 s
1 6 T 0 [0 [0, ] S1 S0
1 ] 7 1 0 1 0 | |
] 1 1 0 1 A B
s|2 s|1 slo P DA
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Multiplexers as general-purpose logic (cont’d)
. . I I R S F four possible
Generalization — w1 | 5 — conﬁgurations
n-1 mux control of truth table
variables 1]o 0 1 rowscanbe
expressed as
single mux data l l l l a function of I,
variable -
A B C D]|G 0 L It 1
. 0 0 0o
Example: o o o |1 1
G(A,B,C,D) 0 0 1[0 0
. 0 0 1 [1 ] 1. —0
canberealized v o 7o o . —4
. o 1 0 |1 |o —2
by an 8:1 MUX 2 - 2 7 1 b
0 1 1 1 1 D—4 81MUX [~
T 0 0 [0 [[1]] _1s5
1 0 0 1 [lO] D_|6
choose A,B,C as 10 1|0 [0 D_|7
control variables 1.0 1 1 1 S2 S1 S0
1 1 0 0 |[T] D | | |
1 1 0 |1 |lo]
T 1 110 [T A B C
1 1 1 |1 |Lo]
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Activity

Realize F = B'CD’ + ABC’ with a 4:1 multiplexer and a
minimum of other gates:
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Demultiplexers/decoders

Decoders/demultiplexers: general concept
o single data input, n control inputs, 2" outputs

o control inputs (called “selects” (S)) represent binary index of
output to which the input is connected

o data input usually called “enable” (G)

1:2 Decoder: 3:8 Decoder:
00=Ge S O0=Ge S2'e S1'e S0’
O1=Ge S O1=Ge S2'e¢ S1'e¢ S0
02=Ge S2'e S1 SO’
2:4 Decoder: 03 =Ge S2'e¢ S1 ¢SO
O0=Ge S1'e SO’ 04 =Ge S2 e S1’'e S0’
O1=Ge S1'e SO O5=Ge S2 ¢ S1'e¢ S0
02=Ge S1 e SO’ O6=Ge S2 e S1 oS0’
03=Ge S1 « SO 07 =Ge S2 ¢ S1 S0
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Gate level implementation of demultiplexers

. active-high active-low
= 1:2 decoders enable enable

2

n 24 Cgecoder

T )00 \G 7 )00
active-high active-low
enable | o1 enable _DOl

BN o

S1 S0 S1 S0
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Demultiplexers as general-purpose logic

= A n:2" decoder can implement any function of n variables
o with the variables used as control inputs
o the enable inputs tied to 1 and
o the appropriate minterms summed to form the function

—> AIBICI
— A'B'C

— A'BC' demultiplexer generates appropriate
— A'BC minterm based on control signals
— AB'C' (it "decodes" control signals)
— AB'C

— ABC'

— ABC

"1"—1 3:8 DEC

N
—

O—chsm.bwm»—no

>—{0n
w—
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Demultiplexers as general-purpose logic (cont’d)

F2 =ABC'D' + ABC

F1=ABC'D + AB'CD + ABCD

« F3=(A'+B' +C'+D)

Enable —

4:16
DEC

LCoONOTUTAhWNRFEO

15

_,A'Blchl
__.ABCD
. ABCD' J;D F1
. ABCD

. ABCD'

. .ABCD —
. A'BCD'
. ABCD

. ABCD'
. ABCD
. AB'CD'
. AB'CD

. ABCD'
. ABCD

L~ ABCD'

L~ ABCD —-—!>0— F3

S
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Cascading decoders

= 5:32 decoder

0 [— ABCDE' 0l—
o 1x2:4 decoder 1|— 1l—
) 2 — 2— ABCDE'
o 4x3:8 decoders — 38 DEcﬁ — — 3.8 DEC3|—
—> 41—
5|— 5—
6 |— 6>
5 s1shl s
F —* 2:4 DEC %
s1so 3
[ ] — 0— AB'CDE'
A B —> 11—
2 — 22—
" 3:8 DECS [ | 3:8 bEC3|
4 —> 41—
— 5—
6 —> 61—
ofy | ABCDE | of|— ABCDE
C D E C D E
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Programmable logic arrays

Pre-fabricated building block of many AND/OR gates

o actually NOR or NAND

o "personalized" by making/breaking connections among the gates
o programmable array block diagram for sum of products form

inputs
AND product R
array
array terms
outputs
L] L] L]
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Enabling concept
Shared product terms among outputs
FO=A +B'C
example: F1=AC + AB
F2=B'C + AB
F3=B'C + A
input side:

personality matrix 1 = uncomplemented in term

0 = complemented in term

product inputs outputs — = does not participate

term A B C |FO F1 F2 F3 .
AB 1 1 -l0o 1 1 o output side:
B'C -0 110 o o 1 1 = term connected to output
AC' 1 - o0lo 1 0o o 0 = no connection to output
B'C' - 0 011 0 1 O
A 1 - - 11 0o o 1 reuse of terms
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Before programming

= All possible connections are available before "programming"
o in reality, all AND and OR gates are NANDs

avad

U U U
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After programming

= Unwanted connections are "blown"
o fuse (normally connected, break unwanted ones)
o anti-fuse (normally diSCé)nrg_ected, make wanted connections)
A

YIvly

YUYy

| |
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Alternate representation for high fan-in structures

= Short-hand notation so we don't have to draw all the wires
o x signifies a connection is present and perpendicular signal is an
input to gate
notation for implementing

N Avavay: FO=AB + A'B'
o 3 ,—\ = 1 1
F1=CD' + C'D
N ABCD
L/
— Lo
L) AB
= .,
L/ A'B
VUW \
L/
(R cD
L/
AB+A'B'
CD'+C'D
Autumn 2003 CSE370 - IV - Combinational Logic Technologies 25
Programmable logic array example
= Multiple functions of A, B, C full decoder as for memory address
o F1I=ABC ABC / bits stored in memory
o F2=A+B+C
— 1 1 1 Vvv ,_\ s el
o F3=A'B'C ) AB'C
o FA=A"+B'+C' ) A'B'C
o F5=AxorBxorC ) A'BC'
o F6 =A xnor B xnor C ) A'BC
1~
) AB'C
A B C|F1F2 F3 F4 F5 F6 =
000/0011O00O0 ) AB'C
001(0 1 0 1 1 1 = ABC
010010111 L)
011|101 01 00 \
100010111 [ ABC
101101 01 00
110010100
111/11 100 11 FLF2 F3 R ES
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PALs and PILLAs

Programmable logic array (PLA)
o what we've seen so far
o unconstrained fully-general AND and OR arrays

Programmable array logic (PAL) \Vevavay?

o constrained topology of the OR array

o innovation by Monolithic Memories

o faster and smaller OR plane

a given column of the OR array

has access to only a subset of
the possible product terms

JYJUUIOU
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PALs and PLAs: design example

BCD to Gray code converter

Z = AB'CD + BCD + AD' + B'CD'

A B C D|W X Y Z

0 0 0 0]0 0 0 O

0 0 0 1|0 0 0 1

0 0 1 0]0 0 1 1

8 (1) é é 8 (1) i 8 minimized functions:
8 Lo é ! é : 8 W = A + BD + BC
0 1 1t 1|1 0o 1 1 X = BC

1 0 0 0|1 0 0 1 Y=B+C

1 0 0 11 0 0 o0

1 0 1 - |- - - -

1 1 -
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PALs and PLAs: design example (cont’d)

= Code converter: programmed PLA  minimized functions:

ABCD W =A+BD +BC
MMM M X=BC
) A Y=B+C
=\ Z = A'B'CD + BCD + AD' + B'CD'
) BD
J BC
) . not a particularly good
= BC candidate for PAL/PLA
L/ B implementation since no terms
) C are shared among outputs
R
L/ A'B'CD
L/
= BCD
L/ AD' however, much more compact
) . and regular implementation
BCD! when compared with discrete
AND and OR gates
W X Y Z
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PALSs and PLAs: design example (cont’d)

ABCD
= Code converter: programmed PAL MM A
L)
D) BD
[ BC
=
|y 0
[ BC'
™
L/ 0
— 5
4 product terms =
per each OR gate =< 0
L B
=< C
L) 0
N
L/ 0
)
A'B'C'D
— BCD
= AD'
L)

WY
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PALs and PLAs: design example (cont’d)

= Code converter: NAND gate implementation
o loss or regularity, harder to understand
o harder to make changes
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PALs and PLAs: another design example

A B CD
. + L

= Magnitude comparator MMM ABCD
A B C D |EQ NE LT GT =
0 0 0 0L 0 0 0 [ D ABCD
0 0 0 1 |0 1 1 0 =
0 0 1 010 1 1 0 == ABCD
0 0 1 1 (0 1 1 0 ) ABICD!
0 1 0 00 1 0 1 — :
0 1 0 11 0 0 0 _J AC
0 1 1 00 1 1 0 :
0 1 1 10 1 1 0 — re
1 0 0 010 1 0 1 L) BD
1 0 0 1/0 1 0 1 Y .
1 0 1 0|1 0 0 0 = %
1 0 1 1]0 1 1 0 ) ABD
1 1 0 00 1 0 1 3
1 1 0 1|0 1 0 1 = BCD
1 1 1 00 1 0 1 L) ABC
1 1 1 1|1 0 0 0 )

| — BC'D'

EQ = ABCD’ + ABCD + ABCD + ABCD’  NE = AC' + AC + BD + BD'
LT = AC + ABD + B'CD GT = AC' + ABC + BCD B NE LT &

Autumn 2003 CSE370 - IV - Combinational Logic Technologies 32

minimized functions: :7




Activity

= Map the following functions to the PLA below:
o W=AB+AC +BC ABC
4 X=ABC +AB +AB AVAvavi
o Y=ABC' +BC+BC

UUUUJUUY

s -C¢
x—G
<~—_F
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‘ Activity (cont’d)
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Read-only memories

Two dimensional array of 1s and Os
o entry (row) is called a "word"

word lines (only one
is active — decoder is
just right for this)

o width of row = word-size 11011
o index is called an "address" LT T T
o address is input 4 é é % %
o selected word is output

decoder ['d_— l'f

] Li

g

internal organization

0
TTTTIT, =
Address

word[i] = 0011
word[j] = 1010

bit lines (normally pulled to 1 through
resistor — selectively connected to 0
by word line controlled switches)
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ROMs and combinational logic

Combinational logic implementation (two-level canonical form)

using a ROM

FO=A'B'C + AB'C' + AB'C
FI1=A'B'C + AABC' + ABC
F2=A'B'C + A'B'C + AB'C
F3=A'BC + AB'C' +ABC

A B C[FO F1 F2 F3

000[/0 0 1 O ROM

0011 1 1 O 8 words x 4 bits/word

010/0 1 0 O

011|0 0 0 1

1001 0 1 1 I I I

101|1 0 0 O

1100 0 0 1 A B C FOF1F2F3

1110 1 0 0 address  outputs
truth table block diagram
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ROM structure

Similar to a PLA structure but with a fully decoded AND array
o completely flexible OR array (unlike PAL)

n address lines

L] L] L]
inputs
memory
decoder 27 word array
lines (2" words
by m bits)
outputs
L] L] L]
m data lines
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ROM vs. PLA

ROM approach advantageous when

o design time is short (no need to minimize output functions)
o most input combinations are needed (e.g., code converters)
o little sharing of product terms among output functions
ROM problems

o size doubles for each additional input

o can't exploit don't cares

PLA approach advantageous when

o design tools are available for multi-output minimization

o there are relatively few unique minterm combinations

o many minterms are shared among the output functions
PAL problems

o constrained fan-ins on OR plane
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Regular logic structures for two-level logic

ROM - full AND plane, general OR plane

o cheap (high-volume component)

o can implement any function of n inputs

o medium speed

PAL — programmable AND plane, fixed OR plane
o intermediate cost

o can implement functions limited by number of terms

o high speed (only one programmable plane that is much smaller than
ROM's decoder)

PLA — programmable AND and OR planes

o most expensive (most complex in design, need more sophisticated tools)
o can implement any function up to a product term limit

o slow (two programmable planes)
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Regular logic structures for multi-level logic

Difficult to devise a regular structure for arbitrary connections
between a

large set of different types of gates

o efficiency/speed concerns for such a structure

o in 467 you'll learn about field programmable gate arrays (FPGASs)
that are just such programmable multi-level structures
programmable multiplexers for wiring
lookup tables for logic functions (programming fills in the table)
multi-purpose cells (utilization is the big issue)

Use multiple levels of PALs/PLAs/ROMs
o output intermediate result
o make it an input to be used in further logic
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Combinational logic technology summary

Random logic

0 0 0o o0 o

Single gates or in groups

conversion to NAND-NAND and NOR-NOR networks

transition from simple gates to more complex gate building blocks
reduced gate count, fan-ins, potentially faster

more levels, harder to design

Time response in combinational networks

Q

Q

gate delays and timing waveforms
hazards/glitches (what they are and why they happen)

Regular logic

Q

Qa
Qa
]

multiplexers/decoders

ROMs

PLAs/PALs
advantages/disadvantages of each
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