Combinational logic

Basic logic

o Boolean algebra, proofs by re-writing, proofs by perfect induction
o logic functions, truth tables, and switches

o NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
Logic realization

o two-level logic and canonical forms

o incompletely specified functions

Simplification

o uniting theorem

o grouping of terms in Boolean functions

Alternate representations of Boolean functions
o cubes

o Karnaugh maps

Autumn 2003 CSE370 - II - Combinational Logic

Possible logic functions of two variables

There are 16 possible functions of 2 input variables:
o in general, there are 2**(2**n) functions of n inputs

_>F

X Y] 16 possible functions (FO—F15)

o 00 0o 0 0O0 OO O 1T 1 1 1 1 1 1 1

o 1,0 o o o 1 1 1 1 0 O O O 1 1 1 1

i o/0 0 1 1 0 0 1 1 0 0 1t 1 0 O0 1 1

1 1 /O i o0 1 0 1 0 1 0 1 0 1 0 1 O 1\
0 / X/ Y/ / \ \ntY \n_tX \ 1
X and Y X xor Y X=Y — X m Y

X not (X and Y)

Autumn 2003 CSE370 - II - Combinational Logic

Cost of different logic functions

Different functions are easier or harder to implement

Q

0O 0 0o o0 O

each has a cost associated with the number of switches needed

0 (FO) and 1 (F15): require 0 switches, directly connect output to
low/high

X (F3) and Y (F5): require 0 switches, output is one of inputs

X (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
XnorY (F4) and X nand Y (F14): require 4 switches

XorY (F7)and Xand Y (F1): require 6 switches

X=Y (F9)and X @ Y (F6): require 16 switches

thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

Autumn 2003 CSE370 - II - Combinational Logic 3

Minimal set of functions

Can we implement all logic functions from NOT, NOR, and NAND?

Q

For example, implementing XandY
is the same as implementing not (X nand Y)

In fact, we can do it with only NOR or only NAND

Q

Q

NOT is just a NAND or a NOR with both inputs tied together

X Y [XnorY X Y |XnandY
0 O 1 0 O 1
1 1 0 1 1 0

and NAND and NOR are "duals",
that is, its easy to implement one using the other

Xnand Y
XnorY

not ((not X) nor (not Y))

not ((not X) nand (not Y))

But lets not move too fast . . .

Q

lets look at the mathematical foundation of logic

Autumn 2003 CSE370 - II - Combinational Logic 4

An algebraic structure

An algebraic structure consists of

Q

0o 0O O

NO OB WN =

a set of elements B

binary operations { +, * }

and a unary operation {’ }

such that the following axioms hold:

. the set B contains at least two elements: a, b

. closure: a+b isinB

. commutativity: at+tb=b+a

. associativity: at(b+c)=(a+b)+c

. identity: a+0=a

. distributivity: at(bec)=(a+b)s(a+c)

. complementarity: a+a’ =1

Autumn 2003 CSE370 - II - Combinational Logic

a*b isinB

a*b=bea
as*(bec)=(a*b)-c
a*1=a
as(b+c)=(a-b)+(a-c)
a*a =0

Boolean algebra

Boolean algebra

u]

u]

Q

Q

B={0, 1}

variables

+ is logical OR, « is logical AND
"is logical NOT

All algebraic axioms hold

Autumn 2003 CSE370 - II - Combinational Logic

Logic functions and Boolean algebra

Any logic function that can be expressed as a truth table can
be written as an expression in Boolean algebra using the

operators:’, +, and ¢

X Y [XeY X Y |[X [XeY

0o 0 (O 0 0 (1 |0

o 1 |0 0 1 (1 |1

1 0 |0 i 0 |0 |O

1 1 1 1 1 0 0

X Y [X |Y |[XeY X eY|[(XeY)+(X oY)

0 0 |1 1 |0 1 1

0o 1 1 |0 |0 0 0 ' o Y’

1 0 0 1 0 0 0 (XeY)+ (X oY) = X=Y

1 1 |0 |0 |1 0 1
Boolean expression that is
true when the variables X
and Y have the same value

X, Y are Boolean algebra variables and false, otherwise
Autumn 2003 CSE370 - 11 - Combinational Logic

Axioms and theorems of Boolean algebra

identity

1. X+0=X 1D. X+*1=X
null

2. X+1=1 2D. X+0=0
idempotency:

3. X+X=X 3D. X+X=X
involution:

4. (X)y =X
complementarity:

5, X+X =1 5D. XX =0
commutativity:

6. X+Y=Y+X 6D. XeY=Y+X
associativity:

7. X+Y)+Z=X+(Y+2) 7D. (XeY)eZ=Xe*(Y*2)

Autumn 2003 CSE370 - II - Combinational Logic

Axioms and theorems of Boolean algebra (cont’d)

distributivity:
8. Xe(Y+2)=(XY)+(X+Z) 8D. X+(YeZ)=(X+Y)*(X+2)
uniting:
9. XeY+Xe¥Y' =X 9D. (X+Y)(X+Y)=X
absorption:
10. X+ XY =X 10D. X+ (X+Y)=X
11.(X+Y)eY=XeY 11ID. (X Y)+Y=X+Y
factoring:
12.(X+Y)e (X +2)= 12D. XY+ X ¢ Z=
XeZ+X Y X+2Z)+ (X' +Y)
concensus:
13.(XeY)+(Ye2)+ (X +Z)= 13D.(X+Y)e(Y+2) (X +2Z)=
XeY+X ¢Z (X+Y)s(X +2)
Autumn 2003 CSE370 - II - Combinational Logic 9

Axioms and theorems of Boolean algebra (cont’d)

de Morgan’s:

14 (X+Y+..)=XeY ... 14D. (XY ..)=X+Y + ..
generalized de Morgan’s:

15. (X, X5,...,X,,,0,1,+,¢) = f(X; X, ,...,.X,’,1,0,2,%)

ns 'Y

establishes relationship between « and +

Autumn 2003 CSE370 - II - Combinational Logic 10

Axioms and theorems of Boolean algebra (cont’d)

Duality

o a dual of a Boolean expression is derived by replacing
* by +, +bye, 0by1,and 1 by 0, and leaving variables unchanged

o any theorem that can be proven is thus also proven for its dual!
o a meta-theorem (a theorem about theorems)
duality:

16. X+Y+ ..o XY ...

generalized duality:
17. 1 (X, X,,....X,,0,1,4,2) & (X, X,,....X,1,0,2,+)

Different than deMorgan’s Law
o this is a statement about theorems
o this is not a way to manipulate (re-write) expressions

Autumn 2003 CSE370 - II - Combinational Logic 11

Proving theorems (rewriting)

Using the axioms of Boolean algebra:

o e.g., prove the theorem: XeY+XeY = X
distributivity (8) XeY+XeY = Xe(Y+Y)
complementarity (5) Xe(Y+Y) = Xe(1)
identity (1D) Xe (1) = X0O

o e.g., prove the theorem: X+XeY = X
identity (1D) X + XeY = Xel + XeY
distributivity (8) Xel + XeY = Xe(1+4Y)
identity (2) Xe(14Y) = Xe(1)
identity (1D) Xe (1) = X0O

Autumn 2003 CSE370 - II - Combinational Logic 12

Activity

Prove the following using the laws of Boolean algebra:
2 XeY)+(Ye2Z)+ (X *2Z)= XY +X Z

Autumn 2003 CSE370 - II - Combinational Logic 13

Proving theorems (perfect induction)

Using perfect induction (complete truth table):
o e.g., de Morgan’s:

PRV X Y X Y [(X+Y) XeY
(X+Y)=XeY 0 0 1 1 1 1
NOR is equivalent to AND 0o 1 1 0 0 0
with inputs complemented 10 0 1 0 0
P P 1 1 0 0 0 0

PRV X Y X Y [(XeY) X+Y
(XeY)=X+Y 0 0 1 1 1 1
NAND is equivalent to OR (1) (1) (1) (1) % }
with inputs complemented 1 1 0 0 0 0

Autumn 2003 CSE370 - II - Combinational Logic 14

A simple example: 1-bit binary adder

Cout Cin
Inputs: A, B, Carry-in allallallall a
Outputs: Sum, Carry-out BIB|IB| BB
JEEEE

A —>

B — >
A B Cin|Cout S
00 0] 0 0 Cin ——» > Cout
0 0 1| 0 1
0 1 0 0 1
R S=A'B'Cin+A'BCin'+AB Cin'+ ABCin
R R Cout = A’B Cin + A B’ Cin + AB Cin’ + A B Cin
1 1 1 1 1

Autumn 2003 CSE370 - II - Combinational Logic 15

Apply the theorems to simplify expressions

The theorems of Boolean algebra can simplify Boolean
expressions

o e.g., full adder’s carry-out function (same rules apply to any function)
Cout A'BCin+ AB'Cin+ ABCin’+ ABCin

A'BCin + AB'Cin + ABCin’ +|/ABCin + ABCin
A'BCin + ABCin + AB'Cin + ABCin’ + ABCin
(A"+A)BCin + AB'Cin + ABCin" + ABCin
(1)BCin + AB'Cin + ABCin’ + ABCin

BCin + AB'Cin + ABCin’ +|ABCin + ABCin

BCin + AB'Cin + ABCin + ABCin” + ABCin

BCin + A(BB+B)Cin + ABCin" + ABCin

BCin + A(1)Cin + ABCin" + ABCin

BCin + ACin + AB(Cin’+ Cin)

BCin + ACin + AB(1)

BCin + ACin + AB adding extra terms

creates new factoring

opportunities
Autumn 2003 CSE370 - II - Combinational Logic 16

Activity

Fill in the truth-table for a circuit that checks that a 4-bit
number is divisible by 2, 3, or 5

X8 X4 X2 X1 By2 By3 By5
0 0 0 0 1 1 1
0 0 0 1 0 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0

Write down Boolean expressions for By2, By3, and By5

Autumn 2003 CSE370 - II - Combinational Logic

17

Activity

Autumn 2003 CSE370 - II - Combinational Logic

From Boolean expressions to logic gates

x—|>o—Y
v
Y — Z
XvY ﬁDz

NOT X X

AND XY XY XAY

OR X+Y

Autumn 2003 CSE370 - II - Combinational Logic

>
=<

== OO
= OO

>
=<

== OO
= OO

From Boolean expressions to logic gates (cont’d)

X Y |Z

NAND %7)z ‘EE

1 0 1

1 1 0

NOR 1

X

Z 0 1 0

YD_ 1 0 0

1 1 0

XOR X X Y |Z

0 0 0

xov > bl

1 1 0

XNOR 6(g%
X=Y X §>Z

_ 0 1 0

= 1o

Autumn 2003 CSE370 - II - Combinational Logic

XxorY=XY+XY
X or Y but not both
("inequality", "difference")

XxnorY=XY+XY
X and Y are the same
("equality", "coincidence")

20

From Boolean expressions to logic gates (cont’d)

More than one way to map expressions to gates

o eg., Z=A B «(C+D)=(A"«(B' - (C+D)))
T2
T1
use of 3-input gate
i/
B —{De— T1 B ——{>o—— —Z

S ::D—[™ —

Autumn 2003 CSE370 - II - Combinational Logic 21

Waveform view of logic functions

Just a sideways truth table
o but note how edges don’t line up exactly
o it takes time for a gate to switch its output!

time R

| 100 | 200
H
Mot ¥ | |
HEY 0
Mot (2 &) I ||
AEY I 1
Mot (2 + %) 1]
B owor r I
Mot (¥ wor 57 1 —

change in Y takes time to "propagate" through gates

Autumn 2003 CSE370 - II - Combinational Logic 22

Choosing different realizations of a function

A B C |z
0 0 00 JR
0 0 1 |1
0 1 00 Lt
o 1 1 |1
1 0 0|0
i ? é % two-level realization
i 1 110 - (we don’t count NOT gates)
a
multi-level realization
' (gates with fewer inputs)
>z
Dj - XOR gate (easier to draw
I_-DB but costlier to build)

Autumn 2003 CSE370 - II - Combinational Logic 23

Which realization is best?

Reduce number of inputs
o literal: input variable (complemented or not)
can approximate cost of logic gate as 2 transitors per literal
why not count inverters?
o fewer literals means less transistors
smaller circuits
o fewer inputs implies faster gates
gates are smaller and thus also faster
o fan-ins (# of gate inputs) are limited in some technologies
Reduce number of gates
o fewer gates (and the packages they come in) means smaller circuits
directly influences manufacturing costs

Autumn 2003 CSE370 - II - Combinational Logic 24

Which is the best realization? (cont’d)

Reduce number of levels of gates

o fewer level of gates implies reduced signal propagation delays

o minimum delay configuration typically requires more gates
wider, less deep circuits

How do we explore tradeoffs between increased circuit delay

and size?

o automated tools to generate different solutions

o logic minimization: reduce number of gates and complexity

o logic optimization: reduction while trading off against delay

Autumn 2003 CSE370 - II - Combinational Logic 25

Are all realizations equivalent?

Under the same input stimuli, the three alternative
implementations have
almost the same waveform behavior

o delays are different

o glitches (hazards) may arise — these could be bad, it depends

o variations due to differences in number of gate levels and structure
The three implementations are functionally equivalent

100 . 200
E I RN
C 1 I L T I e
ci 1 I 1 I Ir I
2 1 I 1 I Ir E
£z 1 r 1 I r L n

Autumn 2003 CSE370 - II - Combinational Logic 26

Implementing Boolean functions

Technology independent
o canonical forms
o two-level forms
o multi-level forms

Technology choices

o packages of a few gates

o regular logic

o two-level programmable logic
o multi-level programmable logic

Autumn 2003 CSE370 - II - Combinational Logic 27

Canonical forms

Truth table is the unique signature of a Boolean function
The same truth table can have many gate realizations
Canonical forms

o standard forms for a Boolean expression

o provides a unique algebraic signature

Autumn 2003 CSE370 - II - Combinational Logic 28

Sum-of-products canonical forms
Also known as disjunctive normal form
Also known as minterm expansion

F= 001 011 101 110 111
F= AB'C + ABC + AB'C + ABC’' + ABC

A B C|F F

0 0 OO

0 0 1 170

0 1 0|0

0 1 1 |10

1 0 0|0

1 0 1|1

1 1 0 |10

1 1 1 |1 F' = AB'C' + ABC' + ABC’

Autumn 2003 CSE370 - 11 - Combinational Logic 29

Sum-of-products canonical form (cont’d)

Product term (or minterm)
o ANDed product of literals — input combination for which output is true
o each variable appears exactly once, true or inverted (but not both)

AR C minterms F in canonical form:

0 0 0 |ABC mo)

0 0 1 |ABC mi F(A,B,C) =32=m(1,3,56,7)

0 1 0 | ABC m2 =ml+m3+m5+m6+m7

o0 1 1 |ABC m3 = A'B'C + A'BC + AB'C + ABC' + ABC
1 0 0 |ABC m4 . o

1 0 1 | ABC m5 canonical form = minimal form

1 1 0 |ABC m6 F(A, B,C) = AB'C + A'BC + AB'C + ABC + ABC’
1 1 1 | ABC m7 = (A'B'+ AB + AB’ + AB)C + ABC'

= ((A" + A)(B' + B))C + ABC'
/ =C+ ABC’
short-hand notation for =ABC' + C

minterms of 3 variables =AB+C

Autumn 2003 CSE370 - II - Combinational Logic 30

Product-of-sums canonical form

Also known as conjunctive normal form
Also known as maxterm expansion

A B CJ|F F
0 0 0 [|0—1
0o 0 1|1 0
0 1 0 |01
0 1 1 |1

1 0 0 (01
1 0 1|1 0
1 1 0|1 O
1 1 1|1 0

F= 000 010 100
F= (A+B+C) (A+B +C) (A+B+0C)

F=(A+B+C)(A+B +C)(A’+B+C)(A+B +C)(A’+B' +C)

Autumn 2003

CSE370 - II - Combinational Logic 31

Product-of-sums canonical form (cont’d)

Sum term (or maxterm)
o ORed sum of literals — input combination for which output is false
o each variable appears exactly once, true or inverted (but not both)

short-hand notation for
maxterms of 3 variables

Autumn 2003

A B C | maxterms

0 0 0 |A+B+C MO
0 0 1 |A+B+C M1
0 1 0 |A+B+C M2
0 1 1 |A+B+C M3
1 0 0 |[A+B+C M4
1 0 1 [|A+B+C M5
1 1 0 |A+B+C M6
1 1 1 |[A+B+C M7

F in canonical form:
F(A, B, C) =T1IM(0,2,4)
MO e M2 « M4
(A+B+C)(A+B +C)(A+B+C)

canonical form = minimal form
F(A,B,C) =(A+B+C)(A+B"+C)(A'+B+C)
=(A+B+C)(A+B +0C)
A+B+C)(A+B+C)
=(A+C)(B+0C)

CSE370 - II - Combinational Logic 32

S-0-P, P-0-§, and de Morgan’s theorem

= Sum-of-products
o FF=ABC + ABC + ABC
= Apply de Morgan’s
o (FY=(AB'C+ABC +ABC’)
2 F=(A+B+C)(A+B +C)(A'+B+C)

= Product-of-sums
0 F=(A+B+C)(A+B +C)A+B+C)(A+B +C)(A+B +C)

= Apply de Morgan’s
a (FY=((A+B+C)A+B +C)A +B+C)A +B +C)A +B +C))
o F=ABC+ABC+ABC+ABC’ + ABC

Autumn 2003

CSE370 - II - Combinational Logic 33

‘ Four alternative two-level implementations

of F=AB + C

canonical sum-of-products

D :PH/

/minimized sum-of-products

F2

/canonical product-of-sums

/minimized product-of-sums

RSy

Autumn 2003

T~
) >
7>

CSE370 - II - Combinational Logic 34

Waveforms for the four alternatives

Waveforms are essentially identical
o except for timing hazards (glitches)

o delays almost identical (modeled as a delay per level, not type of
gate or number of inputs to gate)

Fi I
F2 I
FZ 1 1 I
) I

i e s Bt |

Autumn 2003 CSE370 - II - Combinational Logic 35

Mapping between canonical forms

Minterm to maxterm conversion

o use maxterms whose indices do not appear in minterm expansion
o e.g., F(A,B,C)=2m(1,3,5,6,7) = TIM(0,2,4)

Maxterm to minterm conversion

o use minterms whose indices do not appear in maxterm expansion
o e.g., F(AB,C)=TIM(0,2,4) = =m(1,3,5,6,7)

Minterm expansion of F to minterm expansion of F’

o use minterms whose indices do not appear

o eg., F(AB,C)=2m(1,3,5,6,7) F’'(A,B,C) ==m(0,2,4)
Maxterm expansion of F to maxterm expansion of F’

o use maxterms whose indices do not appear

o e.g., F(AB,C) =TIM(0,2,4) F’(A,B,C) =TIM(1,3,5,6,7)

Autumn 2003 CSE370 - II - Combinational Logic 36

Incompleteley specified functions

Example: binary coded decimal increment by 1

o BCD digits encode the decimal digits 0 — 9
in the bit patterns 0000 — 1001

A B C D|W X Y Z
0 0 O O |jof 0o 0 1
c 0 0 1 10,0 1 off-set of W
0 0 1 O |[jof 0 1
0 0 1 1o 1 o© et of W
0 1 0 ol 1 o0 on-seto
8 i (1) (1) 8 i ! don't care (DC) set of W
0 1 1 1 [[f 0
1 0 0 0 (|1 0
1 0 0 1 ([0 0
i 8 i (1) § X § these inputs patterns should
1 1 0 0 |[[X X X never be encountered in practice
1 1 0 1 XX X X - "don't care" about associated
i 1 1 0 |X6 X X X output values, can be exploited
1 1 1 1 XX X X X in minimization
Autumn 2003 CSE370 - 11 - Combinational Logic 37

Notation for incompletely specified functions

Don’t cares and canonical forms

o so far, only represented on-set

o also represent don’t-care-set

o need two of the three sets (on-set, off-set, dc-set)

Canonical representations of the BCD increment by 1 function:

o Z=m0+m2+m4+m6+m8+di0+di11+d12+d13 +d14 +d15
o Z=X[m(0,2,4,6,8) +d(10,11,12,13,14,15)]
o Z=M1+M3eM5«M7+M9+D10+D11+D12+D13+D14 + D15

2 Z=T1[M(1,3,5,7,9) » D(10,11,12,13,14,15) |

Autumn 2003 CSE370 - II - Combinational Logic 38

Simplification of two-level combinational logic

Finding a minimal sum of products or product of sums realization
o exploit don’t care information in the process

Algebraic simplification

o not an algorithmic/systematic procedure

o how do you know when the minimum realization has been found?
Computer-aided design tools

o precise solutions require very long computation times, especially for
functions with many inputs (> 10)

o heuristic methods employed — "educated guesses" to reduce amount of
computation and yield good if not best solutions

Hand methods still relevant
o to understand automatic tools and their strengths and weaknesses
o ability to check results (on small examples)

Autumn 2003 CSE370 - II - Combinational Logic 39

The uniting theorem

Key tool to simplification: A (B’ + B) = A
Essence of simplification of two-level logic

o find two element subsets of the ON-set where only one variable
changes its value — this single varying variable can be eliminated
and a single product term used to represent both elements

F = AB'+AB' = (A+A)B' = B’

B |F

—E—l_ B has the same value in both on-set rows
7 — B remains
& A has a different value in the two rows

— Ais eliminated

o [8]|>

—
—

¢

Autumn 2003 CSE370 - II - Combinational Logic 40

Boolean cubes

Visual technique for indentifying when the uniting theorem
can be applied

n input variables = n-dimensional "cube"

01 11
0 1 y
1-cube O—0O 2-cube
X 00 10
X
111
3-cube Y 101
000 X
Autumn 2003 CSE370 - II - Combinational Logic 41

Mapping truth tables onto Boolean cubes

Uniting theorem combines two "faces" of a cube
into a larger "face"

Example:

F two faces of size 0 (nodes)
0 1 combine into a face of size 1(line)
1

00 10

A varies within face, B does not
this face represents the literal B'
ON-set = solid nodes
OFF-set = empty nodes
DC-set = x'd nodes

Autumn 2003 CSE370 - II - Combinational Logic 42

Three variable example

Binary full-adder carry-out logic

(A'+A)BCin
A B Cin Cout o AB(Cin'+Cin)
0 0 O 0 ‘
0 0 1 0
0 1 0 0
0 1 1 1
1 0 O 0 g
1 0 1 1 A(B+B")Cin
1 1 0 1
1 1 1 1 the on-set is completely covered by
the combination (OR) of the subcubes
of lower dimensionality - note that 111"
is covered three times
Cout = BCin+AB+ACin
Autumn 2003 CSE370 - II - Combinational Logic 43

Higher dimensional cubes

Sub-cubes of higher dimension than 2

F(A,B,C) = 2m(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable
Le., 3 dimensions — 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal A

Autumn 2003 CSE370 - II - Combinational Logic 44

m-dimensional cubes in a n-dimensional
Boolean space

In a 3-cube (three variables):

o a 0-cube, i.e., a single node, yields a term in 3 literals

o a 1-cube, i.e., a line of two nodes, yields a term in 2 literals

o a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal

o a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
In general,

o an m-subcube within an n-cube (m < n) yields a term
with n — m literals

Autumn 2003 CSE370 - II - Combinational Logic 45

Karnaugh maps

Flat map of Boolean cube
o wrap—around at edges
o hard to draw and visualize for more than 4 dimensions
o virtually impossible for more than 6 dimensions
Alternative to truth-tables to help visualize adjacencies
o guide to applying the uniting theorem

o on-set elements with only one variable changing value are
adjacent unlike the situation in a linear truth-table

Autumn 2003 CSE370 - II - Combinational Logic 46

Karnaugh maps (cont’d)

Numbering scheme based on Gray—code
o e.g.,00,01,11,10
o only a single bit changes in code for adjacent map cells

A
AB —_—
cN_00 01 11 10
0 A
0o [2 |6 |4
cl1 0 |4 |12 |8
1 3 7 |s
— 1 |5 1319 |p
A 3 |7 |15 |11
C
o 12 |6 la 2 (6 Jia J10
C 13 = 1101= ABCD

Autumn 2003 CSE370 - II - Combinational Logic

47

Adjacencies in Karnaugh maps

Wrap from first to last column
Wrap top row to bottom row

010 110| 100

C] oo1| o011| 111 101

Autumn 2003 CSE370 - II - Combinational Logic

48

Karnaugh map examples

Cout = B

f(A,B,C) = £m(0,4,6,7

ol o [1\ o | AB+ ACin + BCin

Cin| o Eg)
:) 0 0 @: obtain the
I8y

complement
E AC + B'C' % of the function
by covering 0s

with subcubes

Autumn 2003 CSE370 - II - Combinational Logic 49

More Karnaugh map examples

G(AB,C)=A

A
) o o] F(A,B,C) = Xm(0,4,5,7) =AC +B'C’
D

vy

0 Q D| o F' simply replace 1's with O‘SCand vige versa
L Be A
c|@ Do o F'(AB,C) = £ m(1,2,3,6)

Autumn 2003 CSE370 - II - Combinational Logic 50

Karnaugh map: 4-variable example

F(A,B,C,D) = £m(0,2,3,5,6,7,8,10,11,14,15)
F=C +ABD +BD'

A 1111

LT

o
o 1| 0] o0 b
C
c tf)1 | A
| I f1—|- 0000 B
find the smallest number of the largest possible
subcubes to cover the ON-set
(fewer terms with fewer inputs per term)
Autumn 2003 CSE370 - II - Combinational Logic 51

Karnaugh maps: don’t cares

f(A,B,C,D) =X m(1,3,5,7,9) + d(6,12,13)
o without don't cares
f= AD + BCD

o
o
>
o

—
—
o
o

Autumn 2003 CSE370 - II - Combinational Logic 52

Karnaugh maps: don’t cares (cont’d)

f(A,B,C,D) = £ m(1,3,5,7,9) + d(6,12,13)

o f=AD+B'CD without don't cares
o f=AD+CD with don't cares
A
ol ol x| o by using don't care as a "1"
—— / a 2-cube can be formed
A1 x] 1) rather than a 1-cube to cover
D this node
11 1) o] o
C don't cares can be treated as
0| X|[0|O 1s or Os
depending on which is more
advantageous
Autumn 2003 CSE370 - II - Combinational Logic 53
Activity

Minimize the function F =X m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13)

Autumn 2003 CSE370 - II - Combinational Logic

Combinational logic summary

Logic functions, truth tables, and switches

o NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
Axioms and theorems of Boolean algebra

o proofs by re-writing and perfect induction
Gate logic

o networks of Boolean functions and their time behavior
Canonical forms

o two-level and incompletely specified functions
Simplification

o a start at understanding two-level simplification
Later
automation of simplification
multi-level logic
time behavior
hardware description languages
design case studies

0O 0 o0 o

Autumn 2003 CSE370 - II - Combinational Logic 55

