Combinational logic

- **Basic logic**
 - Boolean algebra, proofs by re-writing, proofs by perfect induction
 - logic functions, truth tables, and switches
 - NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

- **Logic realization**
 - two-level logic and canonical forms
 - incompletely specified functions

- **Simplification**
 - uniting theorem
 - grouping of terms in Boolean functions

- **Alternate representations of Boolean functions**
 - cubes
 - Karnaugh maps

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
 - in general, there are $2^{2^{2n}}$ functions of n inputs

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>16 possible functions (F0–F15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1 0 0 1 1 1 1 1 1 0 0 1 1 0 1 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1</td>
</tr>
</tbody>
</table>

Diagram:
- $X \land Y$
- $X \lor Y$
- $\neg Y$
- $\neg X$
- $X \lor \neg Y$
- $X \lor \neg Y$
- $\neg (X \lor Y)$
- $\neg (X \land Y)$
- $X \land Y$
- $X \lor Y$
- $X \lor Y$
- $X \lor \neg Y$
- $X \lor \neg Y$
- $\neg (X \lor Y)$
- $\neg (X \land Y)$
Cost of different logic functions

- Different functions are easier or harder to implement
 - each has a cost associated with the number of switches needed
 - 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
 - X (F3) and Y (F5): require 0 switches, output is one of inputs
 - X' (F12) and Y' (F10): require 2 switches for “inverter” or NOT-gate
 - X nor Y (F4) and X nand Y (F14): require 4 switches
 - X or Y (F7) and X and Y (F1): require 6 switches
 - X = Y (F9) and X ⊕ Y (F6): require 16 switches

- thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
 - For example, implementing X and Y is the same as implementing not (X nand Y)
 - In fact, we can do it with only NOR or only NAND
 - NOT is just a NAND or a NOR with both inputs tied together

\[
\begin{array}{c|c|c}
X & Y & X \text{ nor } Y \\
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array} \quad \begin{array}{c|c|c}
X & Y & X \text{ nand } Y \\
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

- and NAND and NOR are “duals”, that is, its easy to implement one using the other

\[
\begin{align*}
X \text{ nand } Y &= \text{ not (not } X \text{ nor not } Y) \\
X \text{ nor } Y &= \text{ not (not } X \text{ nand not } Y)
\end{align*}
\]

- But lets not move too fast . . .
 - lets look at the mathematical foundation of logic
An algebraic structure

- An algebraic structure consists of
 - a set of elements B
 - binary operations $\{+, \cdot\}$
 - and a unary operation $\{'\}$
 - such that the following axioms hold:

 1. the set B contains at least two elements: a, b
 2. closure: $a + b$ is in B $a \cdot b$ is in B
 3. commutativity: $a + b = b + a$ $a \cdot b = b \cdot a$
 4. associativity: $a + (b + c) = (a + b) + c$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 5. identity: $a + 0 = a$ $a \cdot 1 = a$
 6. distributivity: $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
 7. complementarity: $a + a' = 1$ $a \cdot a' = 0$

Boolean algebra

- Boolean algebra
 - $B = \{0, 1\}$
 - variables
 - $+$ is logical OR, \cdot is logical AND
 - $'$ is logical NOT
- All algebraic axioms hold
Logic functions and Boolean algebra

- Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ‘′, +, and •.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X • Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>X′</th>
<th>X′ • Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[(X • Y) + (X′ • Y′) \equiv X = Y\]

X, Y are Boolean algebra variables

Axioms and theorems of Boolean algebra

- identity
 1. \(X + 0 = X\)
 1D. \(X • 1 = X\)
- null
 2. \(X + 1 = 1\)
 2D. \(X • 0 = 0\)
- idempotency:
 3. \(X + X = X\)
 3D. \(X • X = X\)
- involution:
 4. \((X′)′ = X\)
- complementarity:
 5. \(X + X′ = 1\)
 5D. \(X • X′ = 0\)
- commutativity:
 6. \(X + Y = Y + X\)
 6D. \(X • Y = Y • X\)
- associativity:
 7. \((X + Y) + Z = X + (Y + Z)\)
 7D. \((X • Y) • Z = X • (Y • Z)\)
Axioms and theorems of Boolean algebra (cont’d)

- **distributivity:**
 8. \(X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z) \)
 9D. \(X + (Y \cdot Z) = (X + Y) \cdot (X + Z) \)

- **uniting:**
 9. \(X \cdot Y + X \cdot Y’ = X \)
 9D. \((X + Y) \cdot (X + Y’) = X \)

- **absorption:**
 10. \(X + X \cdot Y = X \)
 10D. \(X \cdot (X + Y) = X \)
 11. \((X + Y’) \cdot Y = X \cdot Y \)
 11D. \((X \cdot Y’) + Y = X + Y \)

- **factoring:**
 12. \((X + Y) \cdot (X’ + Z) = \)
 12D. \((X \cdot Y + X’ \cdot Z = \)
 \(X \cdot Z + X’ \cdot Y \)
 \((X + Z) \cdot (X’ + Y) \)

- **consensus:**
 13. \((X \cdot Y) + (Y \cdot Z) + (X’ \cdot Z) = \)
 13D. \((X + Y) \cdot (Y + Z) \cdot (X’ + Z) = \)
 \(X \cdot Y + X’ \cdot Z \)
 \((X + Y) \cdot (X’ + Z) \)

- **de Morgan’s:**
 14. \((X + Y + ...)’ = X’ \cdot Y’ \cdot ... \)
 14D. \((X \cdot Y \cdot ...)’ = X’ + Y’ + ... \)

- **generalized de Morgan’s:**
 15. \(f(X_1, X_2, ..., X_n, 0, 1, +, •) = f(X_1’, X_2’, ..., X_n’, 1, 0, •, +) \)

- establishes relationship between • and +
Axioms and theorems of Boolean algebra (cont’d)

- **Duality**
 - a dual of a Boolean expression is derived by replacing
 - • by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 - any theorem that can be proven is thus also proven for its dual!
 - a meta-theorem (a theorem about theorems)

 duality:
 16. \(X + Y + \ldots \Leftrightarrow X \cdot Y \cdot \ldots\)

 generalized duality:
 17. \(f(X_1, X_2, \ldots, X_n, 0, 1, +, \cdot) \Leftrightarrow f(X_1, X_2, \ldots, X_n, 1, 0, \cdot, +)\)

- Different than deMorgan’s Law
 - this is a statement about theorems
 - this is not a way to manipulate (re-write) expressions

Proving theorems (rewriting)

- **Using the axioms of Boolean algebra:**
 - e.g., prove the theorem: \(X \cdot Y + X \cdot Y' = X\)
 - distributivity (8) \(X \cdot Y + X \cdot Y' = X \cdot (Y + Y')\)
 - complementarity (5) \(X \cdot (Y + Y') = X \cdot (1)\)
 - identity (1D) \(X \cdot (1) = X\)

 - e.g., prove the theorem: \(X + X \cdot Y = X\)
 - identity (1D) \(X + X \cdot Y = X \cdot 1 + X \cdot Y\)
 - distributivity (8) \(X \cdot 1 + X \cdot Y = X \cdot (1 + Y)\)
 - identity (2) \(X \cdot (1 + Y) = X \cdot (1)\)
 - identity (1D) \(X \cdot (1) = X\)
Activity

Prove the following using the laws of Boolean algebra:

- \((X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = X \cdot Y + X' \cdot Z\)

Proving theorems (perfect induction)

Using perfect induction (complete truth table):

- e.g., de Morgan’s:

<table>
<thead>
<tr>
<th></th>
<th>X'</th>
<th>Y'</th>
<th>(X • Y)'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

NOR is equivalent to AND with inputs complemented

\((X + Y)' = X' \cdot Y'\)

- NAND is equivalent to OR with inputs complemented

\((X \cdot Y)' = X' + Y'\)
A simple example: 1-bit binary adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\text{Cout} = A' B' \text{Cin} + A B' \text{Cin} + A B \text{Cin}' + A B \text{Cin} \\
\text{S} = A' B' \text{Cin} + A' B \text{Cin}' + A B' \text{Cin}' + A B \text{Cin}
\]

Apply the theorems to simplify expressions

- The theorems of Boolean algebra can simplify Boolean expressions
 - e.g., full adder’s carry-out function (same rules apply to any function)

\[
\text{Cout} = A' B \text{Cin} + A B' \text{Cin} + A B \text{Cin}' + A B \text{Cin} \\
= A' B \text{Cin} + A B' \text{Cin} + A B \text{Cin}' + [A B \text{Cin} + A B \text{Cin}] \\
= A' B \text{Cin} + A B \text{Cin} + A B' \text{Cin} + A B \text{Cin}' + A B \text{Cin} \\
= (A' + A) B \text{Cin} + A B' \text{Cin} + A B \text{Cin}' + A B \text{Cin} \\
= (1) B \text{Cin} + A B' \text{Cin} + A B \text{Cin}' + A B \text{Cin} \\
= B \text{Cin} + A B' \text{Cin} + A B \text{Cin}' + A B \text{Cin} \\
= B \text{Cin} + A B' \text{Cin} + A B \text{Cin}' + A B \text{Cin} \\
= B \text{Cin} + A (B' + B) \text{Cin} + A B \text{Cin}' + A B \text{Cin} \\
= B \text{Cin} + A (1) \text{Cin} + A B \text{Cin}' + A B \text{Cin} \\
= B \text{Cin} + A \text{Cin} + A B (\text{Cin}' + \text{Cin}) \\
= B \text{Cin} + A \text{Cin} + A B (1) \\
= B \text{Cin} + A \text{Cin} + A B \]

adding extra terms creates new factoring opportunities
Activity

- Fill in the truth-table for a circuit that checks that a 4-bit number is divisible by 2, 3, or 5

<table>
<thead>
<tr>
<th>X8</th>
<th>X4</th>
<th>X2</th>
<th>X1</th>
<th>By2</th>
<th>By3</th>
<th>By5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- Write down Boolean expressions for By2, By3, and By5

\[
\begin{align*}
 \text{By2} &= X_8'X_4'X_2'X_1' + X_8'X_4'X_2X_1' + X_8'X_4X_2'X_1' + X_8'X_4X_2X_1' \\
 &= X_1' \\
 \text{By3} &= X_8'X_4'X_2'X_1' + X_8'X_4'X_2X_1 + X_8'X_4X_2X_1' + X_8X_4'X_2'X_1 \\
 \text{By5} &= X_8'X_4'X_2'X_1' + X_8'X_4X_2'X_1 \\
 &+ X_8X_4'X_2X_1' + X_8X_4X_2X_1
\end{align*}
\]
From Boolean expressions to logic gates

- **NOT** \(X' \), \(\bar{X} \), \(\sim X \)

- **AND** \(X \cdot Y \), \(XY \), \(X \land Y \)

- **OR** \(X + Y \), \(X \lor Y \)

From Boolean expressions to logic gates (cont’d)

- **NAND**

- **NOR**

- **XOR** \(X \oplus Y \)

- **XNOR** \(X = Y \)

\[X \text{ xor } Y = X \cdot Y' + X' \cdot Y \]

\[X \text{ or } Y \text{ but not both} \]

\(\text{("inequality", "difference")} \)

\[X \text{ xor } Y = X + Y \cdot X' \cdot Y' \]

\[X \text{ and } Y \text{ are the same} \]

\(\text{("equality", "coincidence")} \)
From Boolean expressions to logic gates (cont’d)

- More than one way to map expressions to gates
 - e.g., \(Z = A' \cdot B' \cdot (C + D) = (A' \cdot (B' \cdot (C + D))) \)

![Diagram of logic gates and Boolean expression mapping](image)

Waveform view of logic functions

- Just a sideways truth table
 - but note how edges don’t line up exactly
 - it takes time for a gate to switch its output!
Choosing different realizations of a function

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **two-level realization**
 - (we don’t count NOT gates)

- **multi-level realization**
 - (gates with fewer inputs)

- **XOR gate**
 - (easier to draw but costlier to build)

Which realization is best?

- **Reduce number of inputs**
 - literal: input variable (complemented or not)
 - can approximate cost of logic gate as 2 transistors per literal
 - why not count inverters?
 - fewer literals means less transistors
 - smaller circuits
 - fewer inputs implies faster gates
 - gates are smaller and thus also faster
 - fan-ins (# of gate inputs) are limited in some technologies

- **Reduce number of gates**
 - fewer gates (and the packages they come in) means smaller circuits
 - directly influences manufacturing costs
Which is the best realization? (cont’d)

- Reduce number of levels of gates
 - fewer level of gates implies reduced signal propagation delays
 - minimum delay configuration typically requires more gates
 - wider, less deep circuits
- How do we explore tradeoffs between increased circuit delay and size?
 - automated tools to generate different solutions
 - logic minimization: reduce number of gates and complexity
 - logic optimization: reduction while trading off against delay

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
 - delays are different
 - glitches (hazards) may arise – these could be bad, it depends
 - variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent
Implementing Boolean functions

- Technology independent
 - canonical forms
 - two-level forms
 - multi-level forms

- Technology choices
 - packages of a few gates
 - regular logic
 - two-level programmable logic
 - multi-level programmable logic

Canonical forms

- Truth table is the unique signature of a Boolean function
- The same truth table can have many gate realizations
- Canonical forms
 - standard forms for a Boolean expression
 - provides a unique algebraic signature
Sum-of-products canonical forms

- Also known as disjunctive normal form
- Also known as minterm expansion

F = \begin{align*}
001 & \quad 011 & \quad 101 & \quad 110 & \quad 111 \\
F = A'B'C' + A'BC' + AB'C' + ABC' + ABC
\end{align*}

Product term (or minterm)
- ANDed product of literals – input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>minterms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A'B'C' m0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A'B'C m1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A'BC' m2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A'BC m3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>ABC' m4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>ABC m5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>ABC' m6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ABC m7</td>
</tr>
</tbody>
</table>

F in canonical form:
F(A, B, C) = \sum m(1,3,5,6,7) = m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + AB'C + ABC + ABC'

canonical form = minimal form
F(A, B, C) = (A'B' + A'B + AB')C + ABC' + C + ABC'
= AB + C

short-hand notation for minterms of 3 variables
Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion

\[F = (A + B + C) (A + B' + C) (A' + B + C) \]

Product-of-sums canonical form (cont’d)

- Sum term (or maxterm)
 - ORed sum of literals – input combination for which output is false
 - each variable appears exactly once, true or inverted (but not both)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>maxterms</th>
<th>F in canonical form:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>A+B+C</td>
<td>(F(A, B, C) = I1)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>A+B+C'</td>
<td>(= I0)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>A'+B+C</td>
<td>(= I2)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>A'+B'+C</td>
<td>(= I3)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>A'+B+C</td>
<td>(= I4)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>A'+B'+C</td>
<td>(= I5)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>A'+B'+C</td>
<td>(= I6)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A'+B'+C</td>
<td>(= I7)</td>
</tr>
</tbody>
</table>

canonical form \(\neq \) minimal form

\[F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C) \]

\[= (A + C) (B + C) \]

short-hand notation for maxterms of 3 variables
S-o-P, P-o-S, and de Morgan’s theorem

- **Sum-of-products**
 - $F' = A'B'C' + A'BC' + AB'C'$
 - **Apply de Morgan’s**
 - $(F')' = (A'B'C' + A'BC' + AB'C')'$
 - $F = (A + B + C) (A + B' + C) (A' + B + C)$

- **Product-of-sums**
 - $F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')$
 - **Apply de Morgan’s**
 - $(F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'$
 - $F = A'B'C + A'BC + AB'C + ABC' + ABC$

Four alternative two-level implementations of $F = AB + C$
Waveforms for the four alternatives

- Waveforms are essentially identical
 - except for timing hazards (glitches)
 - delays almost identical (modeled as a delay per level, not type of gate or number of inputs to gate)

![Waveform Diagram]

Mapping between canonical forms

- Minterm to maxterm conversion
 - use maxterms whose indices do not appear in minterm expansion
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$

- Maxterm to minterm conversion
 - use minterms whose indices do not appear in maxterm expansion
 - e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$

- Minterm expansion of F to minterm expansion of F'
 - use minterms whose indices do not appear
 - e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$

- Maxterm expansion of F to maxterm expansion of F'
 - use maxterms whose indices do not appear
 - e.g., $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$
Incompletely specified functions

- Example: binary coded decimal increment by 1
 - BCD digits encode the decimal digits 0 – 9 in the bit patterns 0000 – 1001

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- off-set of W
- on-set of W
- don’t care (DC) set of W
- these inputs patterns should never be encountered in practice
- “don’t care” about associated output values, can be exploited in minimization

Notation for incompletely specified functions

- Don’t cares and canonical forms
 - so far, only represented on-set
 - also represent don’t-care-set
 - need two of the three sets (on-set, off-set, dc-set)

- Canonical representations of the BCD increment by 1 function:
 - $Z = m_0 + m_2 + m_4 + m_6 + m_8 + d_{10} + d_{11} + d_{12} + d_{13} + d_{14} + d_{15}$
 - $Z = \Sigma \ [m(0,2,4,6,8) + d(10,11,12,13,14,15) \]$
 - $Z = M_1 \cdot M_3 \cdot M_5 \cdot M_7 \cdot M_9 \cdot D_{10} \cdot D_{11} \cdot D_{12} \cdot D_{13} \cdot D_{14} \cdot D_{15}$
 - $Z = \Pi \ [M(1,3,5,7,9) \cdot D(10,11,12,13,14,15) \]$
Simplification of two-level combinational logic

- Finding a minimal sum of products or product of sums realization
 - exploit don’t care information in the process
- Algebraic simplification
 - not an algorithmic/systematic procedure
 - how do you know when the minimum realization has been found?
- Computer-aided design tools
 - precise solutions require very long computation times, especially for functions with many inputs (> 10)
 - heuristic methods employed – “educated guesses” to reduce amount of computation and yield good if not best solutions
- Hand methods still relevant
 - to understand automatic tools and their strengths and weaknesses
 - ability to check results (on small examples)

The uniting theorem

- Key tool to simplification: $A (B' + B) = A$
- Essence of simplification of two-level logic
 - find two element subsets of the ON-set where only one variable changes its value – this single varying variable can be eliminated and a single product term used to represent both elements

$$F = A'B' + AB' = (A' + A)B' = B'$$

- B has the same value in both on-set rows – B remains
- A has a different value in the two rows – A is eliminated
Boolean cubes

- Visual technique for identifying when the uniting theorem can be applied
- \(n \) input variables = \(n \)-dimensional "cube"

Mapping truth tables onto Boolean cubes

- Uniting theorem combines two "faces" of a cube into a larger "face"
- Example:

\[
\begin{array}{cccc}
A & B & F \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

ON-set = solid nodes
OFF-set = empty nodes
DC-set = \(\times \)'d nodes

Two faces of size 0 (nodes) combine into a face of size 1 (line)

A varies within face, B does not this face represents the literal B'

A

B

F
Three variable example

- Binary full-adder carry-out logic

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Cin</th>
<th>Cout</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[(A'+A)BC_{in}\]
\[AB(C_{in}'+C_{in})\]
\[A(B+B')C_{in}\]

Cout = BC_{in} + AB + AC_{in}

the on-set is completely covered by the combination (OR) of the subcubes of lower dimensionality - note that "111" is covered three times

Higher dimensional cubes

- Sub-cubes of higher dimension than 2

\[F(A,B,C) = \sum(4,5,6,7)\]

on-set forms a square i.e., a cube of dimension 2

represents an expression in one variable i.e., 3 dimensions - 2 dimensions

A is asserted (true) and unchanged B and C vary

This subcube represents the literal A
m-dimensional cubes in a n-dimensional Boolean space

- In a 3-cube (three variables):
 - a 0-cube, i.e., a single node, yields a term in 3 literals
 - a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
 - a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
 - a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
- In general,
 - an m-subcube within an n-cube (m < n) yields a term with n – m literals

Karnaugh maps

- Flat map of Boolean cube
 - wrap–around at edges
 - hard to draw and visualize for more than 4 dimensions
 - virtually impossible for more than 6 dimensions
- Alternative to truth-tables to help visualize adjacencies
 - guide to applying the uniting theorem
 - on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Karnaugh maps (cont’d)

- Numbering scheme based on Gray–code
 - e.g., 00, 01, 11, 10
 - only a single bit changes in code for adjacent map cells

Adjacencies in Karnaugh maps

- Wrap from first to last column
- Wrap top row to bottom row
Karnaugh map examples

- \(F = \)
- \(\text{Cout} = \)
- \(f(A,B,C) = \Sigma m(0,4,6,7) \)

\[
\begin{array}{ccc}
A & B & C \\
\hline
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{array}
\]

\(AB + ACin + BCin \)

obtain the complement of the function by covering 0s with subcubes

More Karnaugh map examples

- \(G(A,B,C) = A \)
- \(F(A,B,C) = \Sigma m(0,4,5,7) = AC + B'C' \)
- \(F' \) simply replace 1's with 0's and vice versa
 \(F'(A,B,C) = \Sigma m(1,2,3,6) = BC' + A'C \)
Karnaugh map: 4-variable example

- \(F(A,B,C,D) = \Sigma m(0,2,3,5,6,7,8,10,11,14,15) \)
- \(F = C + A'BD + B'D' \)

find the smallest number of the largest possible subcubes to cover the ON-set
(fewer terms with fewer inputs per term)

Karnaugh maps: don’t cares

- \(f(A,B,C,D) = \Sigma m(1,3,5,7,9) + d(6,12,13) \)
 - without don’t cares
 - \(f = A'D + B'C'D \)
Karnaugh maps: don’t cares (cont’d)

- \(f(A, B, C, D) = \Sigma m(1, 3, 5, 7, 9) + d(6, 12, 13) \)
 - \(f = A'D + B'C'D \) without don’t cares
 - \(f = A'D + C'D \) with don’t cares

By using don’t care as a “1,” a 2-cube can be formed rather than a 1-cube to cover this node.

Don’t cares can be treated as 1s or 0s depending on which is more advantageous.

Activity

- Minimize the function \(F = \Sigma m(0, 2, 7, 8, 14, 15) + d(3, 6, 9, 12, 13) \)
Combinational logic summary

- Logic functions, truth tables, and switches
 - NOT, AND, OR, NAND, NOR, XOR, ... minimal set
- Axioms and theorems of Boolean algebra
 - proofs by re-writing and perfect induction
- Gate logic
 - networks of Boolean functions and their time behavior
- Canonical forms
 - two-level and incompletely specified functions
- Simplification
 - a start at understanding two-level simplification
- Later
 - automation of simplification
 - multi-level logic
 - time behavior
 - hardware description languages
 - design case studies