
Autumn 2000 CSE370 - VIII - Sequential Logic Technology 1

Sequential logic implementation

❚ Finite-state machines

❙ Moore

❙ Mealy

❙ Synchronous Mealy

❚ Implementation

❙ random logic gates and FFs

❙ programmable logic devices (PAL with FFs)

❚ Design procedure

❙ state diagrams

❙ state transition table

❙ state assignment

❙ next state functions

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 2

D Q
Q

Implementation using PALs

❚ Programmable logic building block for sequential logic

❙ macro-cell: FF + logic

❘ D-FF

❘ two-level logic capability like PAL (e.g., 8 product terms)



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 3

Comparison of Mealy and Moore machines

❚ Mealy machines tend to have less states

❙ different outputs on arcs (n^2) rather than states (n)

❚ Moore machines are safer to use

❙ outputs change at clock edge (always one cycle later)

❙ in Mealy machines, input change can cause output change as soon as 
logic is done – a big problem when two machines are interconnected –
asynchronous feedback

❚ Mealy machines react faster to inputs

❙ react in same cycle – don't need to wait for clock

❙ in Moore machines, more logic may be necessary to decode state into 
outputs – more gate delays after 

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 4

Comparison of Mealy and Moore machines (cont’d)

❚ Moore

❚ Mealy

❚ Synchronous Mealy

state feedback

inputs

outputsreg

combinational
logic for
next state logic for

outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs

inputs outputs

state feedback

reg
combinational

logic for
next state

logic for
outputs



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 5

Vending
Machine
FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

Example: vending machine

❚ Release item after 15 cents are deposited

❚ Single coin slot for dimes, nickels

❚ No change

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 6

Example: vending machine (cont’d)

❚ Suitable abstract representation

❙ tabulate typical input sequences:

❘ 3 nickels

❘ nickel, dime

❘ dime, nickel

❘ two dimes

❙ draw state diagram:

❘ inputs: N, D, reset

❘ output: open chute

❙ assumptions:

❘ assume N and D asserted
for one cycle

❘ each state has a self loop
for N = D = 0 (no coin)

S0

Reset

S2

D

S6

[open]

D

S4

[open]

D

S1

N

S3

N

S5

[open]

N

S8

[open]

D

S7

[open]

N



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 7

Example: vending machine (cont’d)

❚ Minimize number of states - reuse states whenever possible

symbolic state table

present inputs next output
state D N state open
0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 8

present state inputs next state output
Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

1 1 – – 1 1 1

Example: vending machine (cont’d)

❚ Uniquely encode states



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 9

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

Example: Moore implementation

❚ Mapping to logic

0 0 1 1

0 1 1 1

X X X X

1 1 1 1

Q1
D1

Q0

N

D

0 1 1 0

1 0 1 1

X X X X

0 1 1 1

Q1
D0

Q0

N

D

0 0 1 0

0 0 1 0

X X 1 X

0 0 1 0

Q1
Open

Q0

N

D

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 10

present state inputs next state output

Q3 Q2 Q1 Q0 D N D3 D2 D1 D0 open

0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0

1 0 0 1 0 0 0

1 1 - - - - -

0 0 1 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0

1 0 1 0 0 0 0

1 1 - - - - -

0 1 0 0 0 0 0 1 0 0 0

0 1 1 0 0 0 0

1 0 1 0 0 0 0

1 1 - - - - -

1 0 0 0 - - 1 0 0 0 1

D0 = Q0 D’ N’

D1 = Q0 N + Q1 D’ N’

D2 = Q0 D + Q1 N + Q2 D’ N’

D3 = Q1 D + Q2 D + Q2 N + Q3

OPEN = Q3

Example: vending machine (cont’d)

❚ One-hot encoding



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 11

Equivalent Mealy and Moore state diagrams

❚ Moore machine

❙ outputs associated with state

0¢

[0]

10¢

[0]

5¢

[0]

15¢

[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

❚ Mealy machine

❙ outputs associated with transitions

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 12

D0 = reset'(Q0'N + Q0N' + Q1N + Q1D)

D1 = reset'(Q1 + D + Q0N)

OPEN = Q1Q0

Vending machine example (Moore PLD mapping)

DQ

DQ

DQ

Q0

Q1

Open

Com

Seq

Seq

CLK

N

D

Reset



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 13

Example: Mealy implementation

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0
present state inputs next state output

Q1 Q0 D N D1 D0 open
0 0 0 0 0 0 0

0 1 0 1 0
1 0 1 0 0
1 1 – – –

0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 1
1 1 – – –

1 0 0 0 1 0 0
0 1 1 1 1
1 0 1 1 1
1 1 – – –

1 1 – – 1 1 1

D0 = reset’(Q0’N + Q0N’ + Q1N + Q1D)

D1 = reset’(Q1 + D + Q0N)

OPEN = reset’(Q1Q0 + Q1N + Q1D + Q0D)

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1
Open

Q0

N

D

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 14

Example: Mealy implementation

D0 = reset’(Q0’N + Q0N’ + Q1N + Q1D)
D1 = reset’(Q1 + D + Q0N)
OPEN = reset’(Q1Q0 + Q1N + Q1D + Q0D)



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 15

Vending machine: Moore to synch. Mealy

❚ OPEN= Q1Q0 creates a combinational delay after Q1 and Q0 change in 
Moore implementation

❚ This can be corrected by retiming, i.e., move flip-flops and logic through 
each other to improve delay

❚ OPEN= reset'(Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)
= reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

❚ Implementation now looks like a synchronous Mealy machine

❙ it is common for programmable devices to have FF at end of logic

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 16

Vending machine: Mealy to synch. Mealy

0 0 1 0

0 0 1 1

1 0 1 1

0 1 1 1

Q1
Open

Q0

N

D

0 0 1 0

0 0 1 1

X X 1 X

0 1 1 1

Q1
Open

Q0

N

D

❚ OPEN= reset'(Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)
= reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

❚ OPEN= reset’(Q1Q0 + Q1N + Q1D + Q0D)



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 17

OPEN = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

Vending machine (synch. Mealy PLD mapping)

OPEN

DQ

DQ

DQ

Q0

Q1

Open

Seq

Seq

Seq

CLK

N

D

Reset

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 18

Example: traffic light controller

❚ A busy highway is intersected by a little used farmroad

❚ Detectors C sense the presence of cars waiting on the farmroad
❙ with no car on farmroad, light remain green in highway direction
❙ if vehicle on farmroad, highway lights go from Green to Yellow to Red, 
allowing the farmroad lights to become green

❙ these stay green only as long as a farmroad car is detected but never 
longer than a set interval

❙ when these are met, farm lights transition from Green to Yellow to Red, 
allowing highway to return to green

❙ even if farmroad vehicles are waiting, highway gets at least a set interval 
as green

❚ Assume you have an interval timer that generates:
❙ a short time pulse (TS) and
❙ a long time pulse (TL),
❙ in response to a set (ST) signal.
❙ TS is to be used for timing yellow lights and TL for green lights



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 19

highway

farm road

car sensors

Example: traffic light controller (cont’)

❚ Highway/farm road intersection

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 20

Example: traffic light controller (cont’)

❚ Tabulation of inputs and outputs

inputs description outputs description

reset place FSM in initial state HG, HY, HR assert green/yellow/red highway lights

C detect vehicle on the farm road FG, FY, FR assert green/yellow/red highway lights

TS short time interval expired ST start timing a short or long interval

TL long time interval expired

❚ Tabulation of unique states – some light configurations imply others

state description

HG highway green (farm road red)

HY highway yellow (farm road red)

FG farm road green (highway red)

FY farm road yellow (highway red)



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 21

Example: traffic light controller (cont’)

❚ State diagram

Reset

TS'

TS / ST

(TL•C)'

TL•C / ST

TS'

TS / ST

(TL+C')'

TL+C' / ST

HG

FG

FYHY

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 22

Inputs Present State Next State Outputs

C TL TS ST H F

0 – – HG HG 0 Green Red

– 0 – HG HG 0 Green Red

1 1 – HG HY 1 Green Red

– – 0 HY HY 0 Yellow Red

– – 1 HY FG 1 Yellow Red

1 0 – FG FG 0 Red Green

0 – – FG FY 1 Red Green

– 1 – FG FY 1 Red Green

– – 0 FY FY 0 Red Yellow

– – 1 FY HG 1 Red Yellow

SA1: HG = 00 HY = 01 FG = 11 FY = 10
SA2: HG = 00 HY = 10 FG = 01 FY = 11
SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000 (one-hot)

output encoding – similar problem 
to state assignment
(Green = 00, Yellow = 01, Red = 10)

Example: traffic light controller (cont’)

❚ Generate state table with symbolic states

❚ Consider state assignments



Autumn 2000 CSE370 - VIII - Sequential Logic Technology 23

Logic for different state assignments

❚ SA1

NS1 = C•TL'•PS1•PS0 + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0

NS0 = C•TL•PS1'•PS0' + C•TL'•PS1•PS0 + PS1'•PS0

ST = C•TL•PS1'•PS0' + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0

H1 = PS1 H0 = PS1'•PS0

F1 = PS1' F0 = PS1•PS0‘

❚ SA2

NS1 = C•TL•PS1' + TS'•PS1 + C'•PS1'•PS0

NS0 = TS•PS1•PS0' + PS1'•PS0 + TS'•PS1•PS0

ST = C•TL•PS1' + C'•PS1'•PS0 + TS•PS1

H1 = PS0 H0 = PS1•PS0'

F1 = PS0' F0 = PS1•PS0

❚ SA3

NS3 = C'•PS2 + TL•PS2 + TS'•PS3 NS2 = TS•PS1 + C•TL'•PS2

NS1 = C•TL•PS0 + TS'•PS1 NS0 = C'•PS0 + TL'•PS0 + TS•PS3

ST = C•TL•PS0 + TS•PS1 + C'•PS2 + TL•PS2 + TS•PS3

H1 = PS3 + PS2 H0 = PS1

F1 = PS1 + PS0 F0 = PS3

Autumn 2000 CSE370 - VIII - Sequential Logic Technology 24

Sequential logic implementation summary

❚ Models for representing sequential circuits

❙ finite state machines and their state diagrams

❙ Mealy, Moore, and synchronous Mealy machines

❚ Finite state machine design procedure

❙ deriving state diagram

❙ deriving state transition table

❙ assigning codes to states

❙ determining next state and output functions

❙ implementing combinational logic

❚ Implementation technologies

❙ random logic + FFs

❙ PAL with FFs (programmable logic devices – PLDs)


