Combinational logic

% Basic logic
Boolean algebra, proofs by re-writing, proofs by perfect induction
Logic functions, truth tables, and switches
NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

% Logic realization
two-level logic and canonical forms, incompletely specified functions
multi-level logic, converting between ANDs and ORs

% Simplification
uniting theorem
transformations on networks of Boolean functions

# Time behavior
% Hardware description languages
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Possible logic functions of two variables

# There are 16 possible functions of 2 input variables:
in general, there are 2**(2**n) functions of n inputs

i

X Y| 16 possible functions (FO-F15)
0O 00 O 0 0 O O 0 1 1 1 1 1 1
0 110 0 0 0 1 1 0 0 1 1 1 1
i o0 o0 1 1 0 01 1 0 0 1 1 0 0 1 1
1 ito 1 o 1 0o 1 0 1 0 1 0 1 o 1 0 1
e AN
VAR S N ey w1
Xand Y XxorY X=Yy = X nand Y
XorY X nor Y not (X and Y)
not (X or Y)
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Cost of different logic functions

% Different functions are easier or harder to implement
each has a cost associated with the number of switches needed
0 (FO) and 1 (F15): require O switches, directly connect output to low/high
X (F3) and Y (F5): require O switches, output is one of inputs
X' (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate
B X nor Y (F4) and X nand Y (F14): require 4 switches
B X orY (F7) and X and Y (F1): require 6 switches
EX =Y (F9) and X O Y (F6): require 16 switches

thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice
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Minimal set of functions

% Can we implement all logic functions from NOT, NOR, and NAND?
For example, implementing XandY
is the same as implementing not (X nand Y)
% In fact, we can do it with only NOR or only NAND
NOT is just a NAND or a NOR with both inputs tied together

X Y [XnorY X Y [XnandY
0 0 0 1

0 ;L 1
& and NAND énd R]O arg "duals", 1ot 0

that is, its easy to implement one using the other

XnandY = not( (notX) nor (notY) )
38 But lets not move@o¥ast= . not ( (not X) nand (not Y) )

lets look at the mathematical foundation of logic
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An algebraic structure

% An algebraic structure consists of
a set of elements B
binary operations { + , ¢ }
and a unary operation { "}
such that the following axioms hold:

1. the set B contains at least two elements: a, b

2. closure: a+b isinB ash isinB
3. commutativity: a+b=b+a aeb=bea
4. associativity: a+(b+c)=(a+b)+c ae(bec)=(aeb)ec
5. identity: a+0=a ael=a
6. distributivity: a+(bec)=(@a+b)e(a+c) ae(b+c)=(aeb)+(aec)
7. complementarity: a+a'=1 aea’'=0
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Boolean algebra

% Boolean algebra

B={0, 1}

variables
+ is logical OR, e is logical AND
" is logical NOT

% All algebraic axioms hold
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Logic functions and Boolean algebra

% Any logic function that can be expressed as a truth table can be written as
an expression in Boolean algebra using the operators: ’, +, and o

X Y [XeY XY X [XeY

0 0 [0 0 0 (1 [0

o 1 |0 o 1 |1 |1

1 0 |0 1 0 |0 |0

101 |1 1 1|0 |o

XY X |Y [XeY [XeY|[(XeY)+(X oY)

0 o0 [1 |1 |0 1 1

o 1 |1 |0 |0 0 0 -

1 0 lo |1 le ° ° (XeY)+(X'®Y) = X=Y
1 1 |o |0 |1 0 1

Boolean expression that is
true when the variables X
and Y have the same value

X, Y are Boolean algebra variables and false, otherwise
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Axioms and theorems of Boolean algebra

% identity
1. X+

0=X 1D. Xel=X

% null

2. X+1=1 2D. Xe0=0
% idempotency:

3. X+ X=X 3D. XeX=X
% involution:

4. (XY =X
$ complementarity:

5. X+X =1 5D. XeX' =0
3 commutativity:

6. X+Y=Y+X 6D. XeY=YeX

38 associativity:
7. X+ V) +Z=X+(Y+2) 7D. (XeY)eZ=Xe(YeZ)
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Axioms and theorems of Boolean algebra (cont’d)

¥ distributivity:
8. Xe(Y+Z)=(XeY)+(Xe2Z) 8D. X+ (YeZ)=(X+Y)e(X+2)
3 uniting:
9. XeY+XeY' =X
# absorption:
10. X+ XeY =X 10D. Xe(X+Y)=X
1L (X+Y)eY=XeY 11D (X YY) +Y = X+ Y
% factoring:
12.(X+Y)e (X' +2) = 12D. XeY + X e Z =
XeZ+X oY X+2)e (X+Y)
3 concensus:
B X+ Yo+ (X eZ)= 13D.X+Y)e(Y+Z)e (X' +2)=
XeY+X oZ X+Y)e (X +2)

9D. (X+Y)e(X+Y)=X
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Axioms and theorems of Boolean algebra (cont’)

% de Morgan’s:
4. X+ Y+..)=XeYo... 14D. (XoYe .Y =X +Y + ...

% generalized de Morgan's:
15, FOGXopeee X0, 1,4,9) = FOG X' e X, 1,0,0,4)

¥ establishes relationship between  and +
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Axioms and theorems of Boolean algebra (cont’)

% Duality
a dual of a Boolean expression is derived by replacing
eby+,+ bye 0by1l,and 1 by0, and leaving variables unchanged
any theorem that can be proven is thus also proven for its dual!
a meta-theorem (a theorem about theorems)

% duality:
16.X+Y+ ... = XeYe. ..

% generalized duality:
17.F (X X000 X0, 1,4 ,0) = f(X,X,,...,%,1,0,0,4+)

% Different than deMorgan’s Law
this is a statement about theorems
this is not a way to manipulate (re-write) expressions
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Proving theorems (rewriting)

% Using the axioms of Boolean algebra:

e.g., prove the theorem: XeY +XeY = X
distributivity (8) XeY+XeoY = Xe(Y+Y)
complementarity (5) Xe(Y +Y) = Xe(l)
identity (1D) Xe (1) = XO

e.g., prove the theorem: X+ XeY = X
identity (1D) X + XeoY = Xel + XeY
distributivity (8) Xel + XeY = Xe(l+Y)
identity (2) Xe(l+Y) = Xe (1)
identity (1D) Xe (1) = XO
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Activity

% Prove the following using the laws of Boolean algebra:
BEAXeY)+(YoZ)+(XeZ)= XeY+XoZ
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Proving theorems (perfect induction)

38 Using perfect induction (complete truth table):
e.g., de Morgan's:

o XY XY (XYY XY
X+Y)Y=X oY 00 1 1 1 1
NOR is equivalent to AND o 1 1 0 0 0
with inputs complemented 00 1 0 0
P p 1 1 0 0 0 0

P . X Y X Y [(XeY) X +Y
XYy =X'+Y e e e
NAND is equivalent to OR ? é é ? i i
with inputs complemented i 1 0 0 0 0
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A simple example: 1-bit binary adder

3 Inputs: A, B, Carry-in
3 Outputs: Sum, Carry-out

A
0
0
0
0
1
1
1
1

HOorORORON
HOOoRORRO|n

Winter 2001

A—>
—S
B —>
Cin Cout

S=AB' Cin+A'BCin"+ AB'Cin"+ ABCin
Cout=A'BCin+AB Cin+ABCin"+ABCin
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Apply the theorems to simplify expressions

% The theorems of Boolean algebra can simplify Boolean expressions
e.g., full adder's carry-out function (same rules apply to any function)

Cout = A'BCin+AB' Cin+ABCin"+ ABCin

= A'BCin + AB'Cin + ABCin" +[ABCin + ABCin|

= A'BCin + ABCin + AB'Cin + ABCin" + ABCin

= (A"+A)BCin + AB'Cin + ABCin' + ABCin

= (1)BCin + AB'Cin + ABCin" + ABCin

= BCin + AB'Cin + ABCin" +

= BCin + AB'Cin + ABCin + ABCin" + ABCin

= BCin + A(B'+B)Cin + ABCin" + ABCin

= BCin + A(1)Cin + ABCin" + ABCin

= BCin + ACin + AB(Cin' + Cin)

= BCin + ACin + AB(1)

= BCin + ACih + AB adding extra terms
creates new factoring

opportunities
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Activity

% Fill in the truth-table for a circuit that checks that a 4-bit number is divisible

by2,3,0r5
X8 x4 x2 x1 By2 By3 ByS
0 0 0 0 i i i
0 0 0 1 0 0
0 0 1 0 1 0 0
0 0 1 1 0 1 0

% Write down Boolean expressions for By2, By3, and By5
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Activity
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From Boolean expressions to logic gates

— XY
3% NOT X X ~X X—|>0—Y 01
1 0
X Y |Z
% AND XeY XY  XOY X oo
v z 0 1 |0
1 0 0
1 1 1
¥ OR X+Y Xoy X Y |2Z
X 7 o o0 0
Y 0 1 1
1 0 1
1 1 1
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HH OO el =1= =4
HORO< RORO<
OOOH‘N O)—‘)—‘)—“N

mRoox
roro<
OHH#N

X Y |Z
00 1T
o 1 |0
1 0|0
1 11
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From Boolean expressions to logic gates (cont’d)

XxorY=XY+XY
Xor Y but not both
("inequality", "difference™)

XxnorY=XY+XY
Xand Y are the same

("equality”, "coincidence")

20




From Boolean expressions to logic gates (cont’d)

% More than one way to map expressions to gates

Weg., Z=AeB e (C+D)=(A s (B s (C+D)))
T2

T1
use of 3-input gate
A—{> z Ao
B—> T B— z
c— c_
b5 T2 S —
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Waveform view of logic functions

% Just a sideways truth table
ut note how edges don't line up exactly
it takes time for a gate to switch its output!

time

) 100 200
H
¥
Hot 3 Y
REY 1
Hat (% & V) y
LRSS Ir |
Hot (4 + ) i ]
Hwor Ir P
Hat (4 sor 1) m —

ichange in Y takes time to "propagate” through gates
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Choosing different realizations of a function

[

| »Ie-'el realization
- we dan't count NOT gates)
il ——"21
evel realization
| (pateg|with fewer inputs)
—=" Iz

Dj - XOR|gate (easier to draw
I_, = but cpstlier to build)

Winter 2001 CSE370 - Il - Combinational Logic 23

o

T+
1=
|

rororORgOn

A
0
0
0
1
1
1
1

Which realization is best?

% Reduce number of inputs

literal: input variable (complemented or not)
Xlcan approximate cost of logic gate as 2 transitors per literal
Xlwhy not count inverters?

fewer literals means less transistors
XIsmaller circuits

fewer inputs implies faster gates
Xlgates are smaller and thus also faster

fan-ins (# of gate inputs) are limited in some technologies

% Reduce number of gates
fewer gates (and the packages they come in) means smaller circuits

Xldirectly influences manufacturing costs
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Which is the best realization? (cont’d) Are all realizations equivalent?

% Reduce number of levels of gates % Under the same input stimuli, the three alternative implementations have
fewer level of gates implies reduced signal propagation delays almost the same waveform behavior

delays are different
glitches (hazards) may arise
variations due to differences in number of gate levels and structure

minimum delay configuration typically requires more gates
Xlwider, less deep circuits
% How do we explore tradeoffs between increased circuit delay and size?
automated tools to generate different solutions 38 The three implementations are functionally equivalent
logic minimization: reduce number of gates and complexity
logic optimization: reduction while trading off against delay

100 200
4
B
c
21
zz
=
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Implementing Boolean functions Canonical forms
% Technology independent # Truth table is the unique signature of a Boolean function
canonical forms 3 Many alternative gate realizations may have the same truth table

two-level forms

) % Canonical forms
multi-level forms

standard forms for a Boolean expression
provides a unique algebraic signature

% Technology choices
packages of a few gates
regular logic
two-level programmable logic
multi-level programmable logic
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Sume-of-products canonical forms

% Also known as disjunctive normal form
% Also known as minterm expansion

F= 001 o011 101 110 111
F= ABTC + ABC + ABC + ABC' + ABC

A (o]
0 1
0 0
0 1
1 0
1 1
1 0
1 1

F' = ABC' + ABC' + AB'C’
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Sume-of-products canonical form (cont’d)

% Product term (or minterm)
ANDed product of literals — input combination for which output is true
each variable appears exactly once, in true or inverted form (but not both)

A € minterms Fin canonical form:
g g :g,g ﬂ F(AB,C) =3m(13,567)
0 0 | ABC m2 = ml+ m3+m5+mé+m?
0 1 | ABC m3 = ABC + ABC + AB'C + ABC' + ABC
1 0 | ABC" m4 . -
1 1 | ABC ms canonical form # minimal form
1 0 | ABC mé F(A,B,C) =ABT + ABC + ABC + ABC + ABC’
1 1 | ABC m7 = (AB'+ AB + AB’ + AB)C + ABC’
= (A" + A)(B' + B))C + ABC’
=C + ABC’
=ABC'+C
short-hand notation for =AB+C
minterms of 3 variables
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Product-of-sums canonical form

# Also known as conjunctive normal form
% Also known as maxterm expansion

F= 000 010 100
F=(A+B+C) (A+B +C) (A°+B+C)

A o]
0 0
0 1
0 0
0 1
1 0
1 1
1 0
1 1

F=(A+B+C)(A+B +C)(A'+B+CY)(A+B +C)(A'+B +C)
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Product-of-sums canonical form (cont’d)

3 Sum term (or maxterm)
= ORed sum of literals — input combination for which output is false
each variable appears exactly once, in true or inverted form (but not both)

maxterms

Fin canonical form:

A+B+C MO F(A,B,C) =MM(0,2,4)

A+B+C M1 = MO e M2 e M4

A+B+C M2 = (A+B+C)(A+B +C) (A +B+C)
A+B+C’ M3
A+B+C M4 canonical form # minimal form

A+B+C" M5 F(A,B,C) =(A+B+C)(A+B +C)(A +B+C)
A+B+C M6 =(A+B+C)(A+B +C)

A+BHC M7 (A+B+C)(A+B+C)
=(A+C)(B+C)

HHEROOOO|>
HOROROROIND

short-hand notation for
maxterms of 3 variables
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$-0-P, P-0-S, and de Morgan’s theorem

% Sum-of-products
F' = A'B'C' + ABC' + AB'C'

% Apply de Morgan's
(Fy = (A'B'C + A'BC’ + ABCY
BF=(A+B+C)(A+B +C)(A+B+C)

% Product-of-sums
BF=A+B+C)A+B +C)(A+B+CY)(A+B +C)(A+B +C)
% Apply de Morgan's
(FY=((A+B+CYA+B +CYA +B+CYA +B + QA +B +C) )
F = A'B'C + ABC + AB'C + ABC" + ABC
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Four alternative two-level implementations
of F=AB +C

A il 1
B S—ﬂ canonical sum-of-products
(- o=
==
|
|
DDFZ
)
)
>
minimized product-of-sums
e D
T >
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/minimized sum-of-products

v

canonical product-of-sums

T ome

Waveforms for the four alternatives

¥ Waveforms are essentially identical
except for timing hazards (glitches)
delays almost identical (modeled as a delay per level, not type of gate
or number of inputs to gate)

| 100 | 200

A .

E s e

C r 1 r r 1 r .
Fi | T T 1
F2 1
F3 1 | 1
F4 L
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Mapping between canonical forms

3 Minterm to maxterm conversion
use maxterms whose indices do not appear in minterm expansion
e.g., F(A,B,C) = 3m(1,3,5,6,7) = MM(0,2,4)
3 Maxterm to minterm conversion
use minterms whose indices do not appear in maxterm expansion
e.g., F(A,B,C) = NM(0,2,4) = m(1,3,5,6,7)
% Minterm expansion of F to minterm expansion of F’
use minterms whose indices do not appear
e.g., F(A,B,C) = 3m(1,3,5,6,7) F(A,B,C) = m(0,2,4)
% Maxterm expansion of F to maxterm expansion of F’
use maxterms whose indices do not appear
e.g., F(A,B,C) = NM(0,2,4) F(A,B,C) = NMM(1,3,5,6,7)
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Incompleteley specified functions

% Example: binary coded decimal increment by 1
BCD digits encode the decimal digits 0 — 9 in the bit patterns 0000 — 1001

off-set of W

Y
0
1
1
g on-set of W
1

X
0
0
0
1
1
1
1

don't care (DC) set of W

these inputs patterns should
never be encountered in practice
- "don’t care" about associated
output values, can be exploited
in minimization

HFHEHEREEREREE,O0000000R
HHEHEHOOOOKRKHRHOOOOm
HHEHOOHHOOHFEHOORKOON
HOHOHOROROROROROD

EXXXXHRI=Ho o000 oo
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Notation for incompletely specified functions

% Don't cares and canonical forms
so far, only represented on-set
also represent don't-care-set
need two of the three sets (on-set, off-set, dc-set)

% Canonical representations of the BCD increment by 1 function:

EZ=m0+m2+m4+mé+m8+di0+dil+di2 +di3 +di4 +di5
Z =3[ m(0,2,4,6,8) + d(10,11,12,13,14,15) ]

[IZ = M1e M3 eM5eM7 e MO e D10 s D1l e D12« D13 o D14« D15
WZ=n[M{1,357.9) e D(10,11,12,13,14,15) ]
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Simplification of two-level combinational logic

% Finding a minimal sum of products or product of sums realization
exploit don't care information in the process
% Algebraic simplification
not an algorithmic/systematic procedure
how do you know when the minimum realization has been found?
% Computer-aided design tools

precise solutions require very long computation times, especially for
functions with many inputs (> 10)

heuristic methods employed — "educated guesses” to reduce amount of
computation and yield good if not best solutions
% Hand methods still relevant
to understand automatic tools and their strengths and weaknesses
ability to check results (on small examples)
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The uniting theorem

38 Key tool to simplification: A (B"+ B) = A

% Essence of simplification of two-level logic
find two element subsets of the ON-set where only one variable changes
its value — this single varying variable can be eliminated and a single
product term used to represent both elements

F = AB+AB’' = (A'+A)B' = B’
B has the same value in both on-set rows

— B remains

Ahas a different value in the two rows
- Ais eliminated
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Implementations of two-level logic

% Sum-of-products L
AND gates to form product terms (minterms)
OR gate to form sum

% Product-of-sums
OR gates to form sum terms (maxterms) gn
AND gates to form product
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Two-level logic using NAND gates

% Replace minterm AND gates with NAND gates
% Place compensating inversion at inputs of OR gate —

BB
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Two-level logic using NAND gates (cont’d)

% OR gate with inverted inputs is a NAND gate
de Morgan'’s: A"+ B =(AeB)
# Two-level NAND-NAND network
inverted inputs are not counted
in a typical circuit, inversion is done once and signal distributed

=y

Y

Winter 2001 CSE370 - Il - Combinational Logic

43

Two-level logic using NOR gates

% Replace maxterm OR gates with NOR gates
% Place compensating inversion at inputs of AND gate —

*Dl“é
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Two-level logic using NOR gates (cont’d)

% AND gate with inverted inputs is a NOR gate
de Morgan'’s: A'eB =(A+B)

3 Two-level NOR-NOR network
inverted inputs are not counted
in a typical circuit, inversion is done once and signal distributed
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Two-level logic using NAND and NOR gates

%€ NAND-NAND and NOR-NOR networks
de Morgan's law: (A+B) = A'eB’ (AeB)Y = A+ B
[ written differently: A+ B = (A’ B’ (AeB) = (A'+BY

% In other words —

OR is the same as NAND with complemented inputs

AND is the same as NOR with complemented inputs

NAND is the same as OR with complemented inputs

NOR is the same as AND with complemented inputs

AND Yo—

@ — :‘NAND TINOR ) 5 TJNORY
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Conversion between forms

% Convert from networks of ANDs and ORs to networks of NANDs and NORs
introduce appropriate inversions ("bubbles")

38 Each introduced "bubble" must be matched by a corresponding "bubble"
conservation of inversions
do not alter logic function

% Example: AND/OR to NAND/NAND

A

B ::DFT:Df ,
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Conversion between forms (cont’d)

% Example: verify equivalence of two forms

A

B::1377 -,
S

Z=[(A e B) «(C D) I
S[(A+B) s (C+D) T
=[(A+BY+(C+DY ]
= (AeB) +(C+D) D

Winter 2001 CSE370 - Il - Combinational Logic 48




Conversion between forms (cont’d)

% Example: map AND/OR network to NOR/NOR network

2:431
. Eiiji
=0

— Z

c —«DOL 7 :

D"D"i NOR

Step 1
conserve conserve
"bubbles" "bubbles"
Winter 2001 CSE370 - Il - Combinational Logic 49

Conversion between forms (cont’d)

% Example: verify equivalence of two forms

A
\B

=1 ).
c rDi z
ol ) .

0

Z={[(A+BY+(C+DY ¥
={ (A+B)s(C+D) ¥

(A +BY + (C+ DYy

(AeB)+ (CeD) D
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Multi-level logic

% x=ADF + AEF + BDF + BEF + CDF + CEF + G
reduced sum-of-products form — already simplified
6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)
25 wires (19 literals plus 6 internal wires)
¥ x=(A+B+C)(D+EYF + G
factored form — not written as two-level S-o-P
1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
10 wires (7 literals plus 3 internal wires)

A —
g ) I
¢ 3 W .
b N ) —
E ——
P
G
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Conversion of multi-level logic to NAND gates

Level 1 Level 2 Level 3 Level 4

redrawn in terms D]
of conventional  \B.
NAND gates A

-

FDﬁDFD
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® F=A(B+CD)+BC 3 W] ey |
* * original [;:D(*D :D*:DF
AND-ORk A ’7 "
networl
4
oot 3@@57
il R [l R B
bubbles B ’7
H
a sl
H >




Conversion of multi-level logic to NORs

Level 1 Level 2 Level 3 Level 4

S S E

¥ F=AB+CD)+BC

original
anD-or B
network A

conservation of

bubbles  A—]
B.

|
%&

B |
\A

'

redrawn in terms
of conventional
NOR gates

Il e

H -
H D
roducton nd jiﬁD )] et
(1 D
1>
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Conversion between forms
38 Example

A A
@ g 5 ®
i F F
¢ X ¢ X
D D

add double bubbles at inputs

A
A X
4 F
© C% E \?x 3) 8 £ @
D C W
D

distribute bubbles
some mismatches

original circuit

insert inverters to fix mismatches
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AND-OR-invert gates

% AOI function: three stages of logic — AND, OR, Invert
multiple gates "packaged" as a single circuit block

logical concept possible implementation

A A
B B
o :
C C
D D
AND OR Invert NAND NAND  Invert
& Ja&
2x2 AL gate — 3x2 AOL gate —
L1+ |+ b—
symbol o symbol -
& &
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Conversion to AOl forms

% General procedure to place in AOI form
compute the complement of the function in sum-of-products form
by grouping the 0s in the Karnaugh map

% Example: XOR implementation — AxorB=A'B + AB’
AOI form: F=(A"B" + AB)

=
1

@ > @
1
2
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Examples of using AOI gates

%€ Example:
BNF=BC+AC+AB
BF=AB+AC+BC
Implemented by 2-input 3-stack AOI gate

AF=(A+B)(A+C)(B+C)
F'= (B + C) (A" + C) (A + BY)
Implemented by 2-input 3-stack OAI gate

% Example: 4-bit equality function
Z = (A0 BO + AQ" BO")(AL Bl + A1’ B1')(A2 B2 + A2' B2')(A3 B3 + A3’ B3")

each implemented in a single 2x2 AOI gate
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Examples of using AOI gates (cont’d)

% Example: AOI implementation of 4-bit equality function

+ low if AO = BO

A0 2  —highifAO#BO
BO
& A

conservation of bubbles

output Z is high

A2 & ‘\
B2 + if all inputs are low
& then Ai = Bi, i=0,...,.3
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Summary for multi-level logic

% Advantages
circuits may be smaller
gates have smaller fan-in
circuits may be faster
% Disadvantages
more difficult to design
tools for optimization are not as good as for two-level
analysis is more complex

Winter 2001 CSE370 - Il - Combinational Logic 59

Time behavior of combinational networks

¥ Waveforms
visualization of values carried on signal wires over time
useful in explaining sequences of events (changes in value)
% Simulation tools are used to create these waveforms
input to the simulator includes gates and their connections
input stimulus, that is, input signal waveforms

3 Some terms
gate delay — time for change at input to cause change at output
XImin delay — typical/nominal delay — max delay
Xicareful designers design for the worst case
rise time — time for output to transition from low to high voltage
fall time — time for output to transition from high to low voltage
pulse width — time that an output stays high or stays low between changes
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Momentary changes in outputs

# Can be useful — pulse shaping circuits
% Can be a problem — incorrect circuit operation (glitches/hazards)
% Example: pulse shaping circuit

delays matter in function

Oscillatory behavior

4 Another pulse shaping circuit H

resistorg

TL
open [o
switch 1 iﬁ D

@

close switch
| 100
L L - iniially ]
open switch
4 — undefined P
B 100 | 200
c - LA [ D L L
 Fe—— '
F E 4 z | 1 r 1 r 1 |
— R
D remains high for ) [ 1 r 1 r 1
three gate delays after Fis not always 0 )
A changes from low to high pulse 3 gate-delays wide
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Hardware description languages HDLs

% Describe hardware at varying levels of abstraction

# Structural description

textual replacement for schematic

hierarchical composition of modules from primitives
% Behavioral/functional description

describe what module does, not how

synthesis generates circuit for module
% Simulation semantics
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% Abel (circa 1983) - developed by Data-1/O
targeted to programmable logic devices

not good for much more than state machines
%8 ISP (circa 1977) - research project at CMU

simulation, but no synthesis
% Verilog (circa 1985) - developed by Gateway (absorbed by Cadence;
similar to Pascal and C
delays is only interaction with simulator
fairly efficient and easy to write

IEEE standard
% VHDL (circa 1987) - DoD sponsored standard
similar to Ada (emphasis on re-use and maintainability)
simulation semantics visible
very general but verbose
IEEE standard
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Verilog

% Supports structural and behavioral descriptions

# Structural
explicit structure of the circuit

# Behavioral

e.g., each logic gate instantiated and connected to others

program describes input/output behavior of circuit
many structural implementations could have same behavior
e.g., different implementation of one Boolean function

% We'll only be using behavioral Verilog in DesignWorks

rely on schematic when we want structural descriptions
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Structural model

nodul e xor_gate (out, a, b);

i nput a, b;
out put out;
wre abar, bbar, t1, t2;
inverter invA (abar, a);
inverter invB (bbar, b);
and_gate andl (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate orl (out, t1, t2);
endnodul e
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Simple behavioral model

3 Continuous assignment

nodul e xor_gate (out, a,
i nput a, b;

out put out; / simulation register -
reg out;

assign #6 out = a * b;

b);

keeps track of
value of signal

endnodul e
delay from input change
to output change
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Simple behavioral model

% always block

nodul e xor_gate (out, a, b);

i nput a, b;
out put out;
reg out;

always @a or b) begin
#6 out = a ™ by
end

endnodul e

Winter 2001

specifies when block is executed
ie. triggered by which signals
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Driving a simulation

nmodul e stinulus (x,

out put X,
reg [1:0] cnt;
initial begin _——— | initial block executed
e only once at start
cnt = 0; ) of simulation
repeat (4) begin
#10 cnt = cnt + 1;

$display ("@tinme=%, x=%, y=%, cnt=%",
$tine, x, y, cnt); end

#10 $fini sh; \
end
1];

assign x = cnt[
assigny = cnt[0];

endnodul e
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Complete Simulation

% Instantiate stimulus component and device to test in a schematic

stimulus= @ %h‘]D—
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Comparator Example

nmodul e Conparel (A, B, Equal, Al arger, Blarger);
i nput A B
out put Equal , Al arger, Blarger;

assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);

endnodul e
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More Complex Behavioral Model

module life (nO, nl, n2, n3, n4, n5 n6, n7, self, out);

i nput n0, nl, n2, n3, n4, n5, n6, n7, self;
out put out ;
reg out ;

reg [7:0] neighbors;
reg [3:0] count;
reg [3:0] i;

assi gn nei ghbors = {n7, n6, n5 n4, n3, n2, nl, n0};

al ways @nei ghbors or self) begin
count = 0;
for (i =0; i <8; i =i+l1l) count = count + neighbors[i];
out = (count == 3);
out = out | ((self == 1) & (count == 2));
end

endnodul e
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Hardware Description Languages vs.
Programming Languages

3 Program structure
instantiation of multiple components of the same type
specify interconnections between modules via schematic
hierarchy of modules (only leaves can be HDL in DesignWorks)
3 Assignment
continuous assignment (logic always computes)
propagation delay (computation takes time)
timing of signals is important (when does computation have its effect)
3 Data structures
size explicitly spelled out - no dynamic structures
no pointers
% Parallelism
hardware is naturally parallel (must support multiple threads)
assignments can occur in parallel (not just sequentially)
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Combinational logic summary

% Logic functions, truth tables, and switches
NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
% Axioms and theorems of Boolean algebra
proofs by re-writing and perfect induction
% Gate logic
networks of Boolean functions and their time behavior
% Canonical forms
two-level and incompletely specified functions
% Simplification
two-level simplification
# Later
automation of simplification
multi-level logic
design case studies
time behavior
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Hardware Description Languages and
Combinational Logic

% Modules - specification of inputs, outputs, bidirectional, and internal signals
% Continuous assignment - a gate’s output is a function of its inputs at all
times (doesn't need to wait to be "called")

Propagation delay- concept of time and delay in input affecting gate output
Composition - connecting modules together with wires

Hierarchy - modules encapsulate functional blocks

Specification of don't care conditions (accomplished by setting output to "x")

3
3
3
3
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