
Winter 2001 CSE370 - II - Combinational Logic 1

Combinational logic

� Basic logic

� Boolean algebra, proofs by re-writing, proofs by perfect induction

� Logic functions, truth tables, and switches

� NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

� Logic realization

� two-level logic and canonical forms, incompletely specified functions

�multi-level logic, converting between ANDs and ORs

� Simplification

� uniting theorem

� transformations on networks of Boolean functions

� Time behavior

� Hardware description languages

Winter 2001 CSE370 - II - Combinational Logic 2

X Y 16 possible functions (F0–F15)
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0

X and Y
X Y

X or Y

not Y not X
1

X
Y

F

X xor Y

X nor Y
not (X or Y)

X = Y X nand Y
not (X and Y)

Possible logic functions of two variables

� There are 16 possible functions of 2 input variables:

� in general, there are 2**(2**n) functions of n inputs

Winter 2001 CSE370 - II - Combinational Logic 3

Cost of different logic functions

� Different functions are easier or harder to implement

� each has a cost associated with the number of switches needed

� 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high

� X (F3) and Y (F5): require 0 switches, output is one of inputs

� X’ (F12) and Y’ (F10): require 2 switches for "inverter" or NOT-gate

� X nor Y (F4) and X nand Y (F14): require 4 switches

� X or Y (F7) and X and Y (F1): require 6 switches

� X = Y (F9) and X ⊕ Y (F6): require 16 switches

� thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

Winter 2001 CSE370 - II - Combinational Logic 4

X Y X nand Y
0 0 1

1 1 0

X Y X nor Y
0 0 1

1 1 0

X nand Y ≡ not ((not X) nor (not Y))
X nor Y ≡ not ((not X) nand (not Y))

Minimal set of functions

� Can we implement all logic functions from NOT, NOR, and NAND?
� For example, implementing X and Y

is the same as implementing not (X nand Y)

� In fact, we can do it with only NOR or only NAND
� NOT is just a NAND or a NOR with both inputs tied together

� and NAND and NOR are "duals",
that is, its easy to implement one using the other

� But lets not move too fast . . .
� lets look at the mathematical foundation of logic

Winter 2001 CSE370 - II - Combinational Logic 5

An algebraic structure

� An algebraic structure consists of

� a set of elements B

� binary operations { + , • }

� and a unary operation { ’ }

� such that the following axioms hold:

1. the set B contains at least two elements: a, b
2. closure: a + b is in B a • b is in B
3. commutativity: a + b = b + a a • b = b • a
4. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
5. identity: a + 0 = a a • 1 = a
6. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
7. complementarity: a + a’ = 1 a • a’ = 0

Winter 2001 CSE370 - II - Combinational Logic 6

Boolean algebra

� Boolean algebra

� B = {0, 1}

� variables

� + is logical OR, • is logical AND

� ’ is logical NOT

� All algebraic axioms hold

Winter 2001 CSE370 - II - Combinational Logic 7

X, Y are Boolean algebra variables

X Y X • Y
0 0 0
0 1 0
1 0 0
1 1 1

X Y X’ Y’ X • Y X’ • Y’ (X • Y) + (X’ • Y’)
0 0 1 1 0 1 1
0 1 1 0 0 0 0
1 0 0 1 0 0 0
1 1 0 0 1 0 1

(X • Y) + (X’ • Y’) ≡≡≡≡ X = Y

X Y X’ X’ • Y
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Boolean expression that is
true when the variables X
and Y have the same value
and false, otherwise

Logic functions and Boolean algebra

� Any logic function that can be expressed as a truth table can be written as
an expression in Boolean algebra using the operators: ’, +, and •

Winter 2001 CSE370 - II - Combinational Logic 8

Axioms and theorems of Boolean algebra

� identity
1. X + 0 = X 1D. X • 1 = X

� null
2. X + 1 = 1 2D. X • 0 = 0

� idempotency:
3. X + X = X 3D. X • X = X

� involution:
4. (X’)’ = X

� complementarity:
5. X + X’ = 1 5D. X • X’ = 0

� commutativity:
6. X + Y = Y + X 6D. X • Y = Y • X

� associativity:
7. (X + Y) + Z = X + (Y + Z) 7D. (X • Y) • Z = X • (Y • Z)

Winter 2001 CSE370 - II - Combinational Logic 9

Axioms and theorems of Boolean algebra (cont’d)

� distributivity:
8. X • (Y + Z) = (X • Y) + (X • Z) 8D. X + (Y • Z) = (X + Y) • (X + Z)

� uniting:
9. X • Y + X • Y’ = X 9D. (X + Y) • (X + Y’) = X

� absorption:
10. X + X • Y = X 10D. X • (X + Y) = X
11. (X + Y’) • Y = X • Y 11D. (X • Y’) + Y = X + Y

� factoring:
12. (X + Y) • (X’ + Z) = 12D. X • Y + X’ • Z =

X • Z + X’ • Y (X + Z) • (X’ + Y)

� concensus:
13. (X • Y) + (Y • Z) + (X’ • Z) = 13D. (X + Y) • (Y + Z) • (X’ + Z) =

X • Y + X’ • Z (X + Y) • (X’ + Z)

Winter 2001 CSE370 - II - Combinational Logic 10

Axioms and theorems of Boolean algebra (cont’)

� de Morgan’s:
14. (X + Y + ...)’ = X’ • Y’ • ... 14D. (X • Y • ...)’ = X’ + Y’ + ...

� generalized de Morgan’s:
15. f’(X

1
,X

2
,...,X

n
,0,1,+,•) = f(X

1
’,X

2
’,...,X

n
’,1,0,•,+)

� establishes relationship between • and +

Winter 2001 CSE370 - II - Combinational Logic 11

Axioms and theorems of Boolean algebra (cont’)

� Duality

� a dual of a Boolean expression is derived by replacing
• by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged

� any theorem that can be proven is thus also proven for its dual!

� a meta-theorem (a theorem about theorems)

� duality:
16. X + Y + ... ⇔ X • Y • ...

� generalized duality:
17. f (X

1
,X

2
,...,X

n
,0,1,+,•) ⇔ f(X

1
,X

2
,...,X

n
,1,0,•,+)

� Different than deMorgan’s Law

� this is a statement about theorems

� this is not a way to manipulate (re-write) expressions

Winter 2001 CSE370 - II - Combinational Logic 12

Proving theorems (rewriting)

� Using the axioms of Boolean algebra:

� e.g., prove the theorem: X • Y + X • Y’ = X

� e.g., prove the theorem: X + X • Y = X

distributivity (8) X • Y + X • Y’ = X • (Y + Y’)
complementarity (5) X • (Y + Y’) = X • (1)
identity (1D) X • (1) = X ➼

identity (1D) X + X • Y = X • 1 + X • Y
distributivity (8) X • 1 + X • Y = X • (1 + Y)
identity (2) X • (1 + Y) = X • (1)
identity (1D) X • (1) = X ➼

Winter 2001 CSE370 - II - Combinational Logic 13

Activity

� Prove the following using the laws of Boolean algebra:

� (X • Y) + (Y • Z) + (X’ • Z) = X • Y + X’ • Z

(X • Y) + (Y • Z) + (X’ • Z)

identity (X • Y) + (1) • (Y • Z) + (X’ • Z)

complementarity (X • Y) + (X’ + X) • (Y • Z) + (X’ • Z)

distributivity (X • Y) + (X’ • Y • Z) + (X • Y • Z) + (X’ • Z)

associativity (X • Y) + (X • Y • Z) + (X’ • Y • Z) + (X’ • Z)

factoring (X • Y) • (1 + Z) + (X’ • Z) • (1 + Y)

null (X • Y) • (1) + (X’ • Z) • (1)

identity (X • Y) + (X’ • Z) ➼

Winter 2001 CSE370 - II - Combinational Logic 14

(X + Y)’ = X’ • Y’

NOR is equivalent to AND

with inputs complemented

(X • Y)’ = X’ + Y’

NAND is equivalent to OR

with inputs complemented

X Y X’ Y’ (X + Y)’ X’ • Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

X Y X’ Y’ (X • Y)’ X’ + Y’
0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Proving theorems (perfect induction)

� Using perfect induction (complete truth table):

� e.g., de Morgan’s:

1
0
0
0

1
1
1
0

1
0
0
0

1
1
1
0

Winter 2001 CSE370 - II - Combinational Logic 15

A simple example: 1-bit binary adder

� Inputs: A, B, Carry-in

� Outputs: Sum, Carry-out A

B

Cin
Cout

S

A B Cin S Cout
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0
1
1
0
1
0
0
1

0
0
0
1
0
1
1
1

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin

S = A’ B’ Cin + A’ B Cin’ + A B’ Cin’ + A B Cin

Winter 2001 CSE370 - II - Combinational Logic 16

Apply the theorems to simplify expressions

� The theorems of Boolean algebra can simplify Boolean expressions

� e.g., full adder’s carry-out function (same rules apply to any function)

Cout = A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
= A’ B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
= A’ B Cin + A B Cin + A B’ Cin + A B Cin’ + A B Cin
= (A’ + A) B Cin + A B’ Cin + A B Cin’ + A B Cin
= (1) B Cin + A B’ Cin + A B Cin’ + A B Cin
= B Cin + A B’ Cin + A B Cin’ + A B Cin + A B Cin
= B Cin + A B’ Cin + A B Cin + A B Cin’ + A B Cin
= B Cin + A (B’ + B) Cin + A B Cin’ + A B Cin
= B Cin + A (1) Cin + A B Cin’ + A B Cin
= B Cin + A Cin + A B (Cin’ + Cin)
= B Cin + A Cin + A B (1)
= B Cin + A Cin + A B adding extra terms

creates new factoring
opportunities

Winter 2001 CSE370 - II - Combinational Logic 17

Activity

� Fill in the truth-table for a circuit that checks that a 4-bit number is divisible
by 2, 3, or 5

� Write down Boolean expressions for By2, By3, and By5

X8 X4 X2 X1 By2 By3 By5

0 0 0 0 1 1 1
0 0 0 1 0 0 0

0 0 1 0 1 0 0
0 0 1 1 0 1 0

Winter 2001 CSE370 - II - Combinational Logic 18

X8 X4 X2 X1 By2 By3 By5

0 0 0 0 1 1 1
0 0 0 1 0 0 0

0 0 1 0 1 0 0
0 0 1 1 0 1 0
0 1 0 0 1 0 0

0 1 0 1 0 0 1
0 1 1 0 1 1 0

0 1 1 1 0 0 0
1 0 0 0 1 0 0
1 0 0 1 0 1 0

1 0 1 0 1 0 1
1 0 1 1 0 0 0

1 1 0 0 1 1 0
1 1 0 1 0 0 0

1 1 1 0 1 0 0
1 1 1 1 0 1 1

Activity

By2 = X8’X4’X2’X1’ + X8’X4’X2X1’
+ X8’X4X2’X1’ + X8’X4X2X1’
+ X8X4’X2’X1’ + X8X4’X2X1’
+ X8X4X2’X1’ + X8X4X2X1’

= X1’

By3 = X8’X4’X2’X1’ + X8’X4’X2X1
+ X8’X4X2X1’ + X8X4’X2’X1
+ X8X4X2’X1’ + X8X4X2X1

By5 = X8’X4’X2’X1’ + X8’X4X2’X1
+ X8X4’X2X1’ + X8X4X2X1

Winter 2001 CSE370 - II - Combinational Logic 19

X Y Z
0 0 0
0 1 0
1 0 0
1 1 1

X Y
0 1
1 0

X Y Z
0 0 0
0 1 1
1 0 1
1 1 1

X Y

X

X

Y

Y

Z

Z

From Boolean expressions to logic gates

� NOT X’ X ~X

� AND X • Y XY X ∧ Y

� OR X + Y X ∨ Y

Winter 2001 CSE370 - II - Combinational Logic 20

X

Y
Z

X Y Z
0 0 1
0 1 1
1 0 1
1 1 0

X Y Z
0 0 1
0 1 0
1 0 0
1 1 0

Z
X

Y

X

Y
Z

X Y Z
0 0 1
0 1 0
1 0 0
1 1 1

X Y Z
0 0 0
0 1 1
1 0 1
1 1 0

Z
X

Y

X xor Y = X Y’ + X’ Y

X or Y but not both

("inequality", "difference")

X xnor Y = X Y + X’ Y’
X and Y are the same

("equality", "coincidence")

From Boolean expressions to logic gates (cont’d)

� NAND

� NOR

� XOR
X ⊕ Y

� XNOR
X = Y

Winter 2001 CSE370 - II - Combinational Logic 21

T1
T2

use of 3-input gate

A

B

C
D T2

T1

Z
A

B

C
D

Z

From Boolean expressions to logic gates (cont’d)

� More than one way to map expressions to gates

� e.g., Z = A’ • B’ • (C + D) = (A’ • (B’ • (C + D)))

Winter 2001 CSE370 - II - Combinational Logic 22

time

change in Y takes time to "propagate" through gates

Waveform view of logic functions

� Just a sideways truth table

� but note how edges don’t line up exactly

� it takes time for a gate to switch its output!

Winter 2001 CSE370 - II - Combinational Logic 23

A B C Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Choosing different realizations of a function

two-level realization
(we don’t count NOT gates)

XOR gate (easier to draw
but costlier to build)

multi-level realization
(gates with fewer inputs)

Winter 2001 CSE370 - II - Combinational Logic 24

Which realization is best?

� Reduce number of inputs

� literal: input variable (complemented or not)

⌧can approximate cost of logic gate as 2 transitors per literal

⌧why not count inverters?

� fewer literals means less transistors

⌧smaller circuits

� fewer inputs implies faster gates

⌧gates are smaller and thus also faster

� fan-ins (# of gate inputs) are limited in some technologies

� Reduce number of gates

� fewer gates (and the packages they come in) means smaller circuits

⌧directly influences manufacturing costs

Winter 2001 CSE370 - II - Combinational Logic 25

Which is the best realization? (cont’d)

� Reduce number of levels of gates

� fewer level of gates implies reduced signal propagation delays

�minimum delay configuration typically requires more gates

⌧wider, less deep circuits

� How do we explore tradeoffs between increased circuit delay and size?

� automated tools to generate different solutions

� logic minimization: reduce number of gates and complexity

� logic optimization: reduction while trading off against delay

Winter 2001 CSE370 - II - Combinational Logic 26

Are all realizations equivalent?

� Under the same input stimuli, the three alternative implementations have
almost the same waveform behavior

� delays are different

� glitches (hazards) may arise

� variations due to differences in number of gate levels and structure

� The three implementations are functionally equivalent

Winter 2001 CSE370 - II - Combinational Logic 27

Implementing Boolean functions

� Technology independent

� canonical forms

� two-level forms

�multi-level forms

� Technology choices

� packages of a few gates

� regular logic

� two-level programmable logic

�multi-level programmable logic

Winter 2001 CSE370 - II - Combinational Logic 28

Canonical forms

� Truth table is the unique signature of a Boolean function

� Many alternative gate realizations may have the same truth table

� Canonical forms

� standard forms for a Boolean expression

� provides a unique algebraic signature

Winter 2001 CSE370 - II - Combinational Logic 29

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F =

F’ = A’B’C’ + A’BC’ + AB’C’

Sum-of-products canonical forms

� Also known as disjunctive normal form

� Also known as minterm expansion

F = 001 011 101 110 111

+ A’BC + AB’C + ABC’ + ABCA’B’C

Winter 2001 CSE370 - II - Combinational Logic 30

short-hand notation for

minterms of 3 variables

A B C minterms

0 0 0 A’B’C’ m0

0 0 1 A’B’C m1

0 1 0 A’BC’ m2

0 1 1 A’BC m3

1 0 0 AB’C’ m4

1 0 1 AB’C m5

1 1 0 ABC’ m6

1 1 1 ABC m7

F in canonical form:

F(A, B, C) = Σm(1,3,5,6,7)

= m1 + m3 + m5 + m6 + m7

= A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form ≠ minimal form

F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’

= (A’B’ + A’B + AB’ + AB)C + ABC’

= ((A’ + A)(B’ + B))C + ABC’

= C + ABC’

= ABC’ + C

= AB + C

Sum-of-products canonical form (cont’d)

� Product term (or minterm)

� ANDed product of literals – input combination for which output is true

� each variable appears exactly once, in true or inverted form (but not both)

Winter 2001 CSE370 - II - Combinational Logic 31

A B C F F’
0 0 0 0 1
0 0 1 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 0

F = 000 010 100

F =

F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

Product-of-sums canonical form

� Also known as conjunctive normal form

� Also known as maxterm expansion

(A + B + C) (A + B’ + C) (A’ + B + C)

Winter 2001 CSE370 - II - Combinational Logic 32

A B C maxterms

0 0 0 A+B+C M0

0 0 1 A+B+C’ M1

0 1 0 A+B’+C M2

0 1 1 A+B’+C’ M3

1 0 0 A’+B+C M4

1 0 1 A’+B+C’ M5

1 1 0 A’+B’+C M6

1 1 1 A’+B’+C’ M7

short-hand notation for

maxterms of 3 variables

F in canonical form:

F(A, B, C) = ΠM(0,2,4)

= M0 • M2 • M4

= (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form ≠ minimal form

F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)

(A + B + C) (A’ + B + C)

= (A + C) (B + C)

Product-of-sums canonical form (cont’d)

� Sum term (or maxterm)

� ORed sum of literals – input combination for which output is false

� each variable appears exactly once, in true or inverted form (but not both)

Winter 2001 CSE370 - II - Combinational Logic 33

S-o-P, P-o-S, and de Morgan’s theorem

� Sum-of-products

� F’ = A’B’C’ + A’BC’ + AB’C’

� Apply de Morgan’s

� (F’)’ = (A’B’C’ + A’BC’ + AB’C’)’

� F = (A + B + C) (A + B’ + C) (A’ + B + C)

� Product-of-sums

� F’ = (A + B + C’) (A + B’ + C’) (A’ + B + C’) (A’ + B’ + C) (A’ + B’ + C’)

� Apply de Morgan’s

� (F’)’ = ((A + B + C’)(A + B’ + C’)(A’ + B + C’)(A’ + B’ + C)(A’ + B’ + C’))’

� F = A’B’C + A’BC + AB’C + ABC’ + ABC

Winter 2001 CSE370 - II - Combinational Logic 34

canonical sum-of-products

minimized sum-of-products

canonical product-of-sums

minimized product-of-sums

F1

F2

F3

B

A

C

F4

Four alternative two-level implementations

of F = AB + C

Winter 2001 CSE370 - II - Combinational Logic 35

Waveforms for the four alternatives

� Waveforms are essentially identical

� except for timing hazards (glitches)

� delays almost identical (modeled as a delay per level, not type of gate
or number of inputs to gate)

Winter 2001 CSE370 - II - Combinational Logic 36

Mapping between canonical forms

� Minterm to maxterm conversion

� use maxterms whose indices do not appear in minterm expansion

� e.g., F(A,B,C) = Σm(1,3,5,6,7) = ΠM(0,2,4)

� Maxterm to minterm conversion

� use minterms whose indices do not appear in maxterm expansion

� e.g., F(A,B,C) = ΠM(0,2,4) = Σm(1,3,5,6,7)

� Minterm expansion of F to minterm expansion of F’

� use minterms whose indices do not appear

� e.g., F(A,B,C) = Σm(1,3,5,6,7) F’(A,B,C) = Σm(0,2,4)

� Maxterm expansion of F to maxterm expansion of F’

� use maxterms whose indices do not appear

� e.g., F(A,B,C) = ΠM(0,2,4) F’(A,B,C) = ΠM(1,3,5,6,7)

Winter 2001 CSE370 - II - Combinational Logic 37

A B C D W X Y Z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

off-set of W

these inputs patterns should
never be encountered in practice
– "don’t care" about associated
output values, can be exploited
in minimization

Incompleteley specified functions

� Example: binary coded decimal increment by 1

� BCD digits encode the decimal digits 0 – 9 in the bit patterns 0000 – 1001

don’t care (DC) set of W

on-set of W

Winter 2001 CSE370 - II - Combinational Logic 38

Notation for incompletely specified functions

� Don’t cares and canonical forms

� so far, only represented on-set

� also represent don’t-care-set

� need two of the three sets (on-set, off-set, dc-set)

� Canonical representations of the BCD increment by 1 function:

� Z = m0 + m2 + m4 + m6 + m8 + d10 + d11 + d12 + d13 + d14 + d15

� Z = Σ [m(0,2,4,6,8) + d(10,11,12,13,14,15)]

� Z = M1 • M3 • M5 • M7 • M9 • D10 • D11 • D12 • D13 • D14 • D15

� Z = Π [M(1,3,5,7,9) • D(10,11,12,13,14,15)]

Winter 2001 CSE370 - II - Combinational Logic 39

Simplification of two-level combinational logic

� Finding a minimal sum of products or product of sums realization

� exploit don’t care information in the process

� Algebraic simplification

� not an algorithmic/systematic procedure

� how do you know when the minimum realization has been found?

� Computer-aided design tools

� precise solutions require very long computation times, especially for
functions with many inputs (> 10)

� heuristic methods employed – "educated guesses" to reduce amount of
computation and yield good if not best solutions

� Hand methods still relevant

� to understand automatic tools and their strengths and weaknesses

� ability to check results (on small examples)

Winter 2001 CSE370 - II - Combinational Logic 40

A B F

0 0 1

0 1 0

1 0 1

1 1 0

B has the same value in both on-set rows

– B remains

A has a different value in the two rows

– A is eliminated

F = A’B’+AB’ = (A’+A)B’ = B’

The uniting theorem

� Key tool to simplification: A (B’ + B) = A

� Essence of simplification of two-level logic

� find two element subsets of the ON-set where only one variable changes
its value – this single varying variable can be eliminated and a single
product term used to represent both elements

Winter 2001 CSE370 - II - Combinational Logic 41

Implementations of two-level logic

� Sum-of-products

� AND gates to form product terms (minterms)

� OR gate to form sum

� Product-of-sums

� OR gates to form sum terms (maxterms)

� AND gates to form product

Winter 2001 CSE370 - II - Combinational Logic 42

Two-level logic using NAND gates

� Replace minterm AND gates with NAND gates

� Place compensating inversion at inputs of OR gate

Winter 2001 CSE370 - II - Combinational Logic 43

Two-level logic using NAND gates (cont’d)

� OR gate with inverted inputs is a NAND gate

� de Morgan’s: A’ + B’ = (A • B)’

� Two-level NAND-NAND network

� inverted inputs are not counted

� in a typical circuit, inversion is done once and signal distributed

Winter 2001 CSE370 - II - Combinational Logic 44

Two-level logic using NOR gates

� Replace maxterm OR gates with NOR gates

� Place compensating inversion at inputs of AND gate

Winter 2001 CSE370 - II - Combinational Logic 45

Two-level logic using NOR gates (cont’d)

� AND gate with inverted inputs is a NOR gate

� de Morgan’s: A’ • B’ = (A + B)’

� Two-level NOR-NOR network

� inverted inputs are not counted

� in a typical circuit, inversion is done once and signal distributed

Winter 2001 CSE370 - II - Combinational Logic 46

OR

NAND NAND

OR AND

NOR NOR

AND

Two-level logic using NAND and NOR gates

� NAND-NAND and NOR-NOR networks

� de Morgan’s law: (A + B)’ = A’ • B’ (A • B)’ = A’ + B’

� written differently: A + B = (A’ • B’)’ (A • B) = (A’ + B’)’

� In other words ––

� OR is the same as NAND with complemented inputs

� AND is the same as NOR with complemented inputs

� NAND is the same as OR with complemented inputs

� NOR is the same as AND with complemented inputs

Winter 2001 CSE370 - II - Combinational Logic 47

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Conversion between forms

� Convert from networks of ANDs and ORs to networks of NANDs and NORs

� introduce appropriate inversions ("bubbles")

� Each introduced "bubble" must be matched by a corresponding "bubble"

� conservation of inversions

� do not alter logic function

� Example: AND/OR to NAND/NAND

Winter 2001 CSE370 - II - Combinational Logic 48

Z = [(A • B)’ • (C • D)’]’

= [(A’ + B’) • (C’ + D’)]’

= [(A’ + B’)’ + (C’ + D’)’]

= (A • B) + (C • D) ➼

Conversion between forms (cont’d)

� Example: verify equivalence of two forms

A

B

C

D

Z

A

B

C

D

Z

NAND

NAND

NAND

Winter 2001 CSE370 - II - Combinational Logic 49

Step 2
conserve
"bubbles"

Step 1
conserve
"bubbles"

NOR

NOR

NOR

\A

\B

\C

\D

Z

NOR

NORA

B

C

D

Z

Conversion between forms (cont’d)

� Example: map AND/OR network to NOR/NOR network

A

B

C

D

Z

Winter 2001 CSE370 - II - Combinational Logic 50

Z = { [(A’ + B’)’ + (C’ + D’)’]’ }’

= { (A’ + B’) • (C’ + D’) }’

= (A’ + B’)’ + (C’ + D’)’

= (A • B) + (C • D) ➼

Conversion between forms (cont’d)

� Example: verify equivalence of two forms

A

B

C

D

Z

NOR

NOR

NOR

\A

\B

\C

\D

Z

Winter 2001 CSE370 - II - Combinational Logic 51

A
B
C

D
E

F
G

X

Multi-level logic

� x = A D F + A E F + B D F + B E F + C D F + C E F + G

� reduced sum-of-products form – already simplified

� 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)

� 25 wires (19 literals plus 6 internal wires)

� x = (A + B + C) (D + E) F + G

� factored form – not written as two-level S-o-P

� 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate

� 10 wires (7 literals plus 3 internal wires)

Winter 2001 CSE370 - II - Combinational Logic 52

Level 1 Level 2 Level 3 Level 4

original

AND-OR

network
A

C
D

B

B
\C

F

introduction and

conservation of

bubbles
A

C
D

B

B
\C

F

redrawn in terms

of conventional

NAND gates A

C
D

\B

B
\C

F

Conversion of multi-level logic to NAND gates

� F = A (B + C D) + B C’

Winter 2001 CSE370 - II - Combinational Logic 53

Level 1 Level 2 Level 3 Level 4

A

C
D

B

B
\C

Foriginal

AND-OR

network

introduction and

conservation of

bubbles A

C

D

B

B

\C

F

redrawn in terms

of conventional

NOR gates
\A

\C
\D

B

\B
C

F

Conversion of multi-level logic to NORs

� F = A (B + C D) + B C’

Winter 2001 CSE370 - II - Combinational Logic 54

A

X

B
C

D

F
(a)

original circuit

A

X

B
C

D

F
(b)

add double bubbles at inputs

\D

A

\X

B
C

F(c)

distribute bubbles

some mismatches

\D

A

X

B
C

F
\X

(d)

insert inverters to fix mismatches

Conversion between forms

� Example

Winter 2001 CSE370 - II - Combinational Logic 55

&

&

+
2x2 AOI gate

symbol

&

&

+
3x2 AOI gate

symbol

NAND NAND Invert

possible implementation

A
B

C
D

Z

AND OR Invert

logical concept

A
B

C
D

Z

AND-OR-invert gates

� AOI function: three stages of logic — AND, OR, Invert

�multiple gates "packaged" as a single circuit block

Winter 2001 CSE370 - II - Combinational Logic 56

&

&

+

A’

B’

A

B

F

Conversion to AOI forms

� General procedure to place in AOI form

� compute the complement of the function in sum-of-products form

� by grouping the 0s in the Karnaugh map

� Example: XOR implementation –– A xor B = A’ B + A B’

� AOI form: F = (A’ B’ + A B)’

Winter 2001 CSE370 - II - Combinational Logic 57

each implemented in a single 2x2 AOI gate

Examples of using AOI gates

� Example:

� F = B C’ + A C’ + A B

� F’ = A’ B’ + A’ C + B’ C

� Implemented by 2-input 3-stack AOI gate

� F = (A + B) (A + C’) (B + C’)

� F’ = (B’ + C) (A’ + C) (A’ + B’)

� Implemented by 2-input 3-stack OAI gate

� Example: 4-bit equality function

� Z = (A0 B0 + A0’ B0’)(A1 B1 + A1’ B1’)(A2 B2 + A2’ B2’)(A3 B3 + A3’ B3’)

Winter 2001 CSE370 - II - Combinational Logic 58

high if A0 ≠ B0

low if A0 = B0

if all inputs are low
then Ai = Bi, i=0,...,3

output Z is high

conservation of bubbles

A0
B0

A1
B1

A2
B2

A3
B3

&

&
+

&

&
+

&

&
+

&

&
+

NOR Z

Examples of using AOI gates (cont’d)

� Example: AOI implementation of 4-bit equality function

Winter 2001 CSE370 - II - Combinational Logic 59

Summary for multi-level logic

� Advantages

� circuits may be smaller

� gates have smaller fan-in

� circuits may be faster

� Disadvantages

�more difficult to design

� tools for optimization are not as good as for two-level

� analysis is more complex

Winter 2001 CSE370 - II - Combinational Logic 60

Time behavior of combinational networks

� Waveforms

� visualization of values carried on signal wires over time

� useful in explaining sequences of events (changes in value)

� Simulation tools are used to create these waveforms

� input to the simulator includes gates and their connections

� input stimulus, that is, input signal waveforms

� Some terms

� gate delay — time for change at input to cause change at output

⌧min delay – typical/nominal delay – max delay

⌧careful designers design for the worst case

� rise time — time for output to transition from low to high voltage

� fall time — time for output to transition from high to low voltage

� pulse width — time that an output stays high or stays low between changes

Winter 2001 CSE370 - II - Combinational Logic 61

F is not always 0

pulse 3 gate-delays wide

D remains high for
three gate delays after

A changes from low to high

F
A B C D

Momentary changes in outputs

� Can be useful — pulse shaping circuits

� Can be a problem — incorrect circuit operation (glitches/hazards)

� Example: pulse shaping circuit

� A’ • A = 0

� delays matter in function

Winter 2001 CSE370 - II - Combinational Logic 62

initially

undefined

close switch

open switch

+

open
switch

resistor

A B

C
D

Oscillatory behavior

� Another pulse shaping circuit

Winter 2001 CSE370 - II - Combinational Logic 63

Hardware description languages

� Describe hardware at varying levels of abstraction

� Structural description

� textual replacement for schematic

� hierarchical composition of modules from primitives

� Behavioral/functional description

� describe what module does, not how

� synthesis generates circuit for module

� Simulation semantics

Winter 2001 CSE370 - II - Combinational Logic 64

HDLs

� Abel (circa 1983) - developed by Data-I/O
� targeted to programmable logic devices
� not good for much more than state machines

� ISP (circa 1977) - research project at CMU
� simulation, but no synthesis

� Verilog (circa 1985) - developed by Gateway (absorbed by Cadence)
� similar to Pascal and C
� delays is only interaction with simulator
� fairly efficient and easy to write
� IEEE standard

� VHDL (circa 1987) - DoD sponsored standard
� similar to Ada (emphasis on re-use and maintainability)
� simulation semantics visible
� very general but verbose
� IEEE standard

Winter 2001 CSE370 - II - Combinational Logic 65

Verilog

� Supports structural and behavioral descriptions

� Structural

� explicit structure of the circuit

� e.g., each logic gate instantiated and connected to others

� Behavioral

� program describes input/output behavior of circuit

�many structural implementations could have same behavior

� e.g., different implementation of one Boolean function

� We’ll only be using behavioral Verilog in DesignWorks

� rely on schematic when we want structural descriptions

Winter 2001 CSE370 - II - Combinational Logic 66

module xor_gate (out, a, b);
input a, b;
output out;
wire abar, bbar, t1, t2;

inverter invA (abar, a);
inverter invB (bbar, b);
and_gate and1 (t1, a, bbar);
and_gate and2 (t2, b, abar);
or_gate or1 (out, t1, t2);

endmodule

Structural model

Winter 2001 CSE370 - II - Combinational Logic 67

module xor_gate (out, a, b);
input a, b;
output out;
reg out;

assign #6 out = a ^ b;

endmodule

Simple behavioral model

� Continuous assignment

delay from input change
to output change

simulation register -
keeps track of
value of signal

Winter 2001 CSE370 - II - Combinational Logic 68

module xor_gate (out, a, b);
input a, b;
output out;
reg out;

always @(a or b) begin
#6 out = a ^ b;

end

endmodule

Simple behavioral model

� always block

specifies when block is executed
ie. triggered by which signals

Winter 2001 CSE370 - II - Combinational Logic 69

module stimulus (x, y);
output x, y;
reg [1:0] cnt;

initial begin
cnt = 0;
repeat (4) begin
#10 cnt = cnt + 1;
$display ("@ time=%d, x=%b, y=%b, cnt=%b",
$time, x, y, cnt); end

#10 $finish;
end

assign x = cnt[1];
assign y = cnt[0];

endmodule

Driving a simulation

2-bit vector

initial block executed
only once at start
of simulation

directive to stop
simulation

print to a console

Winter 2001 CSE370 - II - Combinational Logic 70

Complete Simulation

� Instantiate stimulus component and device to test in a schematic

x

y

a

b

z

Winter 2001 CSE370 - II - Combinational Logic 71

module Compare1 (A, B, Equal, Alarger, Blarger);
input A, B;
output Equal, Alarger, Blarger;

assign #5 Equal = (A & B) | (~A & ~B);
assign #3 Alarger = (A & ~B);
assign #3 Blarger = (~A & B);

endmodule

Comparator Example

Winter 2001 CSE370 - II - Combinational Logic 72

module life (n0, n1, n2, n3, n4, n5, n6, n7, self, out);
input n0, n1, n2, n3, n4, n5, n6, n7, self;
output out;
reg out;
reg [7:0] neighbors;
reg [3:0] count;
reg [3:0] i;

assign neighbors = {n7, n6, n5, n4, n3, n2, n1, n0};

always @(neighbors or self) begin
count = 0;
for (i = 0; i < 8; i = i+1) count = count + neighbors[i];
out = (count == 3);
out = out | ((self == 1) & (count == 2));

end

endmodule

More Complex Behavioral Model

Winter 2001 CSE370 - II - Combinational Logic 73

Hardware Description Languages vs.

Programming Languages

� Program structure

� instantiation of multiple components of the same type

� specify interconnections between modules via schematic

� hierarchy of modules (only leaves can be HDL in DesignWorks)

� Assignment

� continuous assignment (logic always computes)

� propagation delay (computation takes time)

� timing of signals is important (when does computation have its effect)

� Data structures

� size explicitly spelled out - no dynamic structures

� no pointers

� Parallelism

� hardware is naturally parallel (must support multiple threads)

� assignments can occur in parallel (not just sequentially)

Winter 2001 CSE370 - II - Combinational Logic 74

Hardware Description Languages and

Combinational Logic

� Modules - specification of inputs, outputs, bidirectional, and internal signals

� Continuous assignment - a gate’s output is a function of its inputs at all
times (doesn’t need to wait to be "called")

� Propagation delay- concept of time and delay in input affecting gate output

� Composition - connecting modules together with wires

� Hierarchy - modules encapsulate functional blocks

� Specification of don’t care conditions (accomplished by setting output to “x”)

Winter 2001 CSE370 - II - Combinational Logic 75

Combinational logic summary

� Logic functions, truth tables, and switches

� NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set

� Axioms and theorems of Boolean algebra

� proofs by re-writing and perfect induction

� Gate logic

� networks of Boolean functions and their time behavior

� Canonical forms

� two-level and incompletely specified functions

� Simplification

� two-level simplification

� Later

� automation of simplification
� multi-level logic

� design case studies

� time behavior

