
Winter 2001 CSE370 - I - Introduction 1

CSE370: Introduction to Digital Design

! Course staff
"Darko Kirovski, Vassily Litvinov

! Course web
"www.cs.washington.edu/education/courses/370/01wi/
"www.cs.washington.edu/370/01wi/

! Today and Friday
"What is logic design?
"What is digital hardware?
" Preview of what you will be doing in this class

! Next week
"Class administration, overview of course web, and logistics

Winter 2001 CSE370 - I - Introduction 2

Why are you here?

! Obvious reasons
" this course is part of the CS/CompE requirements
" it is the implementation basis for all modern computing devices

⌧building large things from small components
⌧provide a model of how a computer works

! More important reasons
" the inherent parallelism in hardware is often our first exposure to

parallel computation
" it offers an interesting counterpoint to software design and is therefore

useful in furthering our understanding of computation, in general

Winter 2001 CSE370 - I - Introduction 3

What will you learn in CSE370?

! The language of logic design
"Boolean algebra, logic minimization, state, timing, CAD tools

! The concept of state in digital systems
" analogous to variables and program counters in software systems

! How to specify/simulate/compile our designs
"hardware description languages
" tools to simulate the workings of our designs
" logic compilers to synthesize the hardware blocks of our designs
"mapping onto programmable hardware (code generation)

! Contrast with software design
" sequential and parallel implementations
" specify algorithm as well as computing/storage resources it will use

Winter 2001 CSE370 - I - Introduction 4

Applications of logic design

! Conventional computer design
"CPUs, busses, peripherals

! Networking and communications
" phones, modems, routers

! Embedded products
" in cars, toys, appliances, entertainment devices

! Scientific equipment
" testing, sensing, reporting

! The world of computing is much much bigger than just PCs!

Winter 2001 CSE370 - I - Introduction 5

A quick history lesson

! 1850: George Boole invents Boolean algebra
"maps logical propositions to symbols
" permits manipulation of logic statements using mathematics

! 1938: Claude Shannon links Boolean algebra to switches
"his Masters� thesis

! 1945: John von Neumann develops the first stored program computer
" its switching elements are vacuum tubes (a big advance from relays)

! 1946: ENIAC . . . The world�s first completely electronic computer
" 18,000 vacuum tubes
" several hundred multiplications per minute

! 1947: Shockley, Brittain, and Bardeen invent the transistor
" replaces vacuum tubes
" enable integration of multiple devices into one package
" gateway to modern electronics

Winter 2001 CSE370 - I - Introduction 6

What is logic design?

! What is design?
" given a specification of a problem, come up with a way of solving it

choosing appropriately from a collection of available components
"while meeting some criteria for size, cost, power, beauty, elegance, etc.

! What is logic design?
" determining the collection of digital logic components to perform a

specified control and/or data manipulation and/or communication
function and the interconnections between them

"which logic components to choose? � there are many implementation
technologies (e.g., off-the-shelf fixed-function components,
programmable devices, transistors on a chip, etc.)

" the design may need to be optimized and/or transformed to meet design
constraints

Winter 2001 CSE370 - I - Introduction 7
sense

sense

driveAND

What is digital hardware?

! Collection of devices that sense and/or control wires that carry a digital
value (i.e., a physical quantity that can be interpreted as a �0� or �1�)
" example: digital logic where voltage < 0.8v is a �0� and > 2.0v is a �1�
" example: pair of transmission wires where a �0� or �1� is distinguished

by which wire has a higher voltage (differential)
" example: orientation of magnetization signifies a �0� or a �1�

! Primitive digital hardware devices
" logic computation devices (sense and drive)

⌧are two wires both �1� - make another be �1� (AND)
⌧is at least one of two wires �1� - make another be �1� (OR)
⌧is a wire �1� - then make another be �0� (NOT)

"memory devices (store)
⌧store a value
⌧recall a previously stored value

Winter 2001 CSE370 - I - Introduction 8

What is happening now in digital design?

! Important trends in how industry does hardware design
" larger and larger designs
" shorter and shorter time to market
" cheaper and cheaper products

! Scale
" pervasive use of computer-aided design tools over hand methods
"multiple levels of design representation

! Time
" emphasis on abstract design representations
" programmable rather than fixed function components
" automatic synthesis techniques
" importance of sound design methodologies

! Cost
"higher levels of integration
"use of simulation to debug designs

Winter 2001 CSE370 - I - Introduction 9

Computation: abstract vs. implementation

! Up to now, computation has been a mental exercise (paper, programs)
! This class is about physically implementing computation using physical

devices that use voltages to represent logical values
! Basic units of computation are:

" representation: "0", "1" on a wire
set of wires (e.g., for binary integers)

" assignment: x = y
" data operations: x + y � 5
" control:

sequential statements: A; B; C
conditionals: if x == 1 then y
loops: for (i = 1 ; i == 10, i++)
procedures: A; proc(...); B;

! We will study how each of these are implemented in hardware and
composed into computational structures

Winter 2001 CSE370 - I - Introduction 10

close switch (if A is �1� or asserted)
and turn on light bulb (Z)

A Z

open switch (if A is �0� or unasserted)
and turn off light bulb (Z)

Switches: basic element of physical
implementations

! Implementing a simple circuit (arrow shows action if wire changes to �1�):

Z ≡ A

A
Z

Winter 2001 CSE370 - I - Introduction 11

AND

OR

Z ≡ A and B

Z ≡ A or B

A B

A

B

Switches (cont�d)

! Compose switches into more complex ones (Boolean functions):

Winter 2001 CSE370 - I - Introduction 12

Switching networks

! Switch settings
" determine whether or not a conducting path exists to light

the light bulb

! To build larger computations
"use a light bulb (output of the network) to set other switches (inputs to

another network).

! Connect together switching networks
" to construct larger switching networks, i.e., there is a way to connect

outputs of one network to the inputs of the next.

Winter 2001 CSE370 - I - Introduction 13

conducting
path composed

of switches
closes circuit

current flowing through coil
magnetizes core and causes normally
closed (nc) contact to be pulled open

when no current flows, the spring of the contact
returns it to its normal position

Relay networks

! A simple way to convert between conducting paths and switch settings is
to use (electro-mechanical) relays.

! What is a relay?

! What determines the switching speed of a relay network?

Winter 2001 CSE370 - I - Introduction 14

Transistor networks

! Relays aren't used much anymore
" some traffic light controllers are still electro-mechanical

! Modern digital systems are designed in CMOS technology
"MOS stands for Metal-Oxide on Semiconductor
"C is for complementary because there are both normally-open and

normally-closed switches

! MOS transistors act as voltage-controlled switches
" similar, though easier to work with than relays.

Winter 2001 CSE370 - I - Introduction 15

n-channel
open when voltage at G is low

closes when:
voltage(G) > voltage (S) + ε

p-channel
closed when voltage at G is low

opens when:
voltage(G) < voltage (S) � ε

MOS transistors

! MOS transistors have three terminals: drain, gate, and source
" they act as switches in the following way:

if the voltage on the gate terminal is (some amount) higher/lower than
the source terminal then a conducting path will be established between
the drain and source terminals

G

S D

G

S D

Winter 2001 CSE370 - I - Introduction 16

3v

X

Y 0 volts

x y

3 volts0v

what is the
relationship

between x and y?

MOS networks

0 volts

3 volts

Winter 2001 CSE370 - I - Introduction 17

x y z1 z2

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts

3 volts

3 volts

what is the
relationship

between x, y and z?

Two input networks

3v

X Y

0v

Z1

3v

X Y

0v

Z2

3 volts

3 volts

3 volts

0 volts

3 volts

0 volts

0 volts

0 volts

NAND NOR

Winter 2001 CSE370 - I - Introduction 18

Speed of MOS networks

! What influences the speed of CMOS networks?
" charging and discharging of voltages on wires and gates of transistors

! Capacitors hold charge
" capacitance is at gates of transistors and wire material

! Resistors slow movement of electrons
" resistance mostly due to transistors

Winter 2001 CSE370 - I - Introduction 19

scope of CSE 370

Representation of digital designs

! Physical devices (transistors, relays)

! Switches

! Truth tables

! Boolean algebra

! Gates

! Waveforms

! Finite state behavior

! Register-transfer behavior

! Concurrent abstract specifications

Winter 2001 CSE370 - I - Introduction 20

Digital vs. analog

! Convenient to think of digital systems as having only
discrete, digital, input/output values

! In reality, real electronic components exhibit
continuous, analog, behavior

! Why do we make the digital abstraction anyway?
" switches operate this way
" easier to think about a small number of discrete values

! Why does it work?
" does not propagate small errors in values
" always resets to 0 or 1

Winter 2001 CSE370 - I - Introduction 21

Technology State 0 State 1

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitor Charged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

Mapping from physical world to binary world

Winter 2001 CSE370 - I - Introduction 22

inputs outputssystem

Combinational vs. sequential digital circuits

! A simple model of a digital system is a unit with inputs and outputs:

! Combinational means "memory-less"
" a digital circuit is combinational if its output values

only depend on its input values

Winter 2001 CSE370 - I - Introduction 23

easy to implement
with CMOS transistors
(the switches we have
available and use most)

Combinational logic symbols

! Common combinational logic systems have standard symbols called
logic gates

"Buffer, NOT

"AND, NAND

"OR, NOR

Z

A
B

Z

Z

A

A
B

Winter 2001 CSE370 - I - Introduction 24

Sequential logic

! Sequential systems
" exhibit behaviors (output values) that depend not only

on the current input values, but also on previous input values

! In reality, all real circuits are sequential
" because the outputs do not change instantaneously after an input change
"why not, and why is it then sequential?

! A fundamental abstraction of digital design is to reason (mostly) about
steady-state behaviors
" look at the outputs only after sufficient time has elapsed for the system

to make its required changes and settle down

Winter 2001 CSE370 - I - Introduction 25

Synchronous sequential digital systems

! Outputs of a combinational circuit depend only on current inputs
" after sufficient time has elapsed

! Sequential circuits have memory
" even after waiting for the transient activity to finish

! The steady-state abstraction is so useful that most designers use a form of
it when constructing sequential circuits:
" the memory of a system is represented as its state
" changes in system state are only allowed to occur at specific times

controlled by an external periodic clock
" the clock period is the time that elapses between state changes it must

be sufficiently long so that the system reaches a steady-state before
the next state change at the end of the period

Winter 2001 CSE370 - I - Introduction 26

Abstractions

! Some we've seen already
" digital interpretation of analog values
" transistors as switches
" switches as logic gates
"use of a clock to realize a synchronous sequential circuit

! Some others we will see
" truth tables and Boolean algebra to represent combinational logic
" encoding of signals with more than two logical values into binary form
" state diagrams to represent sequential logic
"hardware description languages to represent digital logic
"waveforms to represent temporal behavior

Winter 2001 CSE370 - I - Introduction 27

An example

! Calendar subsystem: number of days in a month (to control watch display)
"used in controlling the display of a wrist-watch LCD screen

" inputs: month, leap year flag
" outputs: number of days

Winter 2001 CSE370 - I - Introduction 28

Implementation in software

integer number_of_days (int month, Boolean leap_flag) {

switch (month) {
case 1: return (31);

case 2: if (leap_flag) then return (29)

else return (28);
case 3: return (31);

...
case 12: return (31);

default: return (0);

}

}

Winter 2001 CSE370 - I - Introduction 29

leapmonth

d28 d29 d30 d31

month leap d28 d29 d30 d31
0000 � � � � �
0001 � 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 � 0 0 0 1
0100 � 0 0 1 0
0101 � 0 0 0 1
0110 � 0 0 1 0
0111 � 0 0 0 1
1000 � 0 0 0 1
1001 � 0 0 1 0
1010 � 0 0 0 1
1011 � 0 0 1 0
1100 � 0 0 0 1
1101 � � � � �
111� � � � � �

Implementation as a
combinational digital system

! Encoding:
"how many bits for each input/output?
" binary number for month
" four wires for 28, 29, 30, and 31

! Behavior:
" combinational
" truth table

specification

Winter 2001 CSE370 - I - Introduction 30

symbol
for and

symbol
for or symbol

for not

Combinational example (cont�d)

! Truth-table to logic to switches to gates
" d28 = 1 when month=0010 and leap=0
" d28 = m8'�m4'�m2�m1'�leap'

" d31 = 1 when month=0001 or month=0011 or ... month=1100
" d31 = (m8'�m4'�m2'�m1) + (m8'�m4'�m2�m1) + ... (m8�m4�m2'�m1')
" d31 = can we simplify more?

month leap d28 d29 d30 d31
0001 � 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 � 0 0 0 1
0100 � 0 0 1 0
...
1100 � 0 0 0 1
1101 � � � � �
111� � � � � �
0000 � � � � �

Winter 2001 CSE370 - I - Introduction 31

Combinational example (cont�d)

! d28 = m8'�m4'�m2�m1'�leap�

! d29 = m8'�m4'�m2�m1'�leap

! d30 = (m8'�m4�m2'�m1') + (m8'�m4�m2�m1') + (m8�m4'�m2'�m1) +
(m8�m4'�m2�m1)

= (m8'�m4�m1') + (m8�m4'�m1)

! d31 = (m8'�m4'�m2'�m1) + (m8'�m4'�m2�m1) + (m8'�m4�m2'�m1) +
(m8'�m4�m2�m1) + (m8�m4'�m2'�m1') + (m8�m4'�m2�m1') +
(m8�m4�m2'�m1')

Winter 2001 CSE370 - I - Introduction 32

Activity

! How much can we simplify d31?

! What if we started the months with 0 instead of 1?
(i.e., January is 0000 and December is 1011)

d31 is true if:month is 7 or less and odd (1, 3, 5, 7), or
month is 8 or more and even (8, 10, 12, and includes 14)

d31 is true if:m8 is 0 and m1 is 1, or m8 is 1 and m1 is 0

d31 = m8�m1 + m8m1�

More complex expression (0, 2, 4, 6, 7, 9, 11):

d31 = m8�m4�m2�m1� + m8�m4�m2m1� + m8�m4m2�m1� + m8�m4m2m1�
+ m8�m4m2m1 + m8m4�m2�m1 + m8m4�m2m1

d31 = m8�m1� + m8�m4m2 + m8m1 (includes 13 and 15)
d31 = (d28 + d29 + d30)�

Winter 2001 CSE370 - I - Introduction 33

Combinational example (cont�d)

! d28 = m8'�m4'�m2�m1'�leap�

! d29 = m8'�m4'�m2�m1'�leap

! d30 = (m8'�m4�m2'�m1') + (m8'�m4�m2�m1') + (m8�m4'�m2'�m1) +
(m8�m4'�m2�m1)

! d31 = (m8'�m4'�m2'�m1) + (m8'�m4'�m2�m1) + (m8'�m4�m2'�m1) +
(m8'�m4�m2�m1) + (m8�m4'�m2'�m4') + (m8�m4'�m2�m1') +
(m8�m4�m2'�m1')

Winter 2001 CSE370 - I - Introduction 34

Another example

! Door combination lock:
" punch in 3 values in sequence and the door opens; if there is an error

the lock must be reset; once the door opens the lock must be reset

" inputs: sequence of input values, reset
" outputs: door open/close
"memory: must remember combination

or always have it available as an input

Winter 2001 CSE370 - I - Introduction 35

Implementation in software

integer combination_lock () {
integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value());
v1 = read_value();
if (v1 != c[1]) then error = 1;

while (!new_value());
v2 = read_value();
if (v2 != c[2]) then error = 1;

while (!new_value());
v3 = read_value();
if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);

}

Winter 2001 CSE370 - I - Introduction 36

Implementation as a sequential digital system

! Encoding:
"how many bits per input value?
"how many values in sequence?
"how do we know a new input value is entered?
"how do we represent the states of the system?

! Behavior:
" clock wire tells us when it�s ok to look at inputs

(i.e., they have settled after change)
" sequential: sequence of values must be entered
" sequential: remember if an error occurred
" finite-state specification

resetvalue

open/closed

new

clock
state

Winter 2001 CSE370 - I - Introduction 37

C2!=value
& new

C3!=value
& new

reset

not newnot newnot new

closed

S1

closed
C1=value

& new

S2

closed
C2=value

& new

S3

C3=value
& new

OPEN

open

C1!=value
& new

closed

ERR

Sequential example (cont�d):
abstract control

! Finite-state diagram
" states: 5 states

⌧represent point in execution of machine
⌧each state has outputs

" transitions: 6 from state to state, 5 self transitions, 1 global
⌧changes of state occur when clock says it�s ok
⌧based on value of inputs

" inputs: reset, new, results of comparisons
" output: open/closed

Winter 2001 CSE370 - I - Introduction 38

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux
control

clock

Sequential example (cont�d):
data-path vs. control

! Internal structure
" data-path

⌧storage for combination
⌧comparators

" control
⌧finite-state machine controller
⌧control for data-path
⌧state changes controlled by clock

Winter 2001 CSE370 - I - Introduction 39

closed

closed
mux=C1reset equal

& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Sequential example (cont�d):
finite-state machine

! Finite-state machine
" refine state diagram to include internal structure

Winter 2001 CSE370 - I - Introduction 40

reset new equal state state mux open/closed
1 � � � S1 C1 closed
0 0 � S1 S1 C1 closed
0 1 0 S1 ERR � closed
0 1 1 S1 S2 C2 closed
0 0 � S2 S2 C2 closed
0 1 0 S2 ERR � closed
0 1 1 S2 S3 C3 closed
0 0 � S3 S3 C3 closed
0 1 0 S3 ERR � closed
0 1 1 S3 OPEN � open
0 � � OPEN OPEN � open
0 � � ERR ERR � closed

next

Sequential example (cont�d):
finite-state machine

! Finite-state machine
" generate state table (much like a truth-table) closed

closed
mux=C1

reset equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new
open

Winter 2001 CSE370 - I - Introduction 41

Sequential example (cont�d):
encoding

! Encode state table
" state can be: S1, S2, S3, OPEN, or ERR

⌧needs at least 3 bits to encode: 000, 001, 010, 011, 100
⌧and as many as 5: 00001, 00010, 00100, 01000, 10000
⌧choose 4 bits: 0001, 0010, 0100, 1000, 0000

" output mux can be: C1, C2, or C3
⌧needs 2 to 3 bits to encode
⌧choose 3 bits: 001, 010, 100

" output open/closed can be: open or closed
⌧needs 1 or 2 bits to encode
⌧choose 1 bits: 1, 0

Winter 2001 CSE370 - I - Introduction 42

good choice of encoding!

mux is identical to
last 3 bits of state

open/closed is
identical to first bit
of state

Sequential example (cont�d):
encoding

! Encode state table
" state can be: S1, S2, S3, OPEN, or ERR

⌧choose 4 bits: 0001, 0010, 0100, 1000, 0000
" output mux can be: C1, C2, or C3

⌧choose 3 bits: 001, 010, 100
" output open/closed can be: open or closed

⌧choose 1 bits: 1, 0

reset new equal state state mux open/closed
1 � � � 0001 001 0
0 0 � 0001 0001 001 0
0 1 0 0001 0000 � 0
0 1 1 0001 0010 010 0
0 0 � 0010 0010 010 0
0 1 0 0010 0000 � 0
0 1 1 0010 0100 100 0
0 0 � 0100 0100 100 0
0 1 0 0100 0000 � 0
0 1 1 0100 1000 � 1
0 � � 1000 1000 � 1
0 � � 0000 0000 � 0

next

Winter 2001 CSE370 - I - Introduction 43

Activity

! Have lock always wait for 3 key presses exactly before making a decision
" remove reset

not equal
& new

not equal
& new

closed
mux=C1 equal

& new

not newnot newnot new

S1 S2 S3 OPEN
closed

mux=C2 equal
& new

closed
mux=C3 equal

& new

open

not equal
& new

closed

E2

not new not new

closed

E3
new closed

ERR
new

Winter 2001 CSE370 - I - Introduction 44

reset

open/closed

new equal

controller
mux
control

clock

reset

open/closed

new equal

mux
control

clock

comb. logic

state

special circuit element,
called a register, for
remembering inputs
when told to by clock

Sequential example (cont�d):
controller implementation

! Implementation of the controller

Winter 2001 CSE370 - I - Introduction 45

system

data-path control

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

switching
networks

Design hierarchy

Winter 2001 CSE370 - I - Introduction 46

Summary

! That was what the entire course is about
" converting solutions to problems into combinational and sequential

networks effectively organizing the design hierarchically
" doing so with a modern set of design tools that lets us handle large

designs effectively
" taking advantage of optimization opportunities

! Now you�ll do it all over again
" this time it will take nine weeks

