Sequential Circuits

¥ Another way to understand setup/hold/propagation time
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Sequential logic examples

38 Finite state machine concept
FSMs are the decision making logic of digital designs
partitioning designs into datapath and control elements
when inputs are sampled and outputs asserted
3 Basic design approach: a 4-step design process
¥ Implementation examples and case studies
finite-string pattern recognizer
complex counter
traffic light controller
door combination lock
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General FSM design procedure

¥ (1) Determine inputs and outputs
¥ (2) Determine possible states of machine
— state minimization
¥ (3) Encode states and outputs into a binary code
— state assignment or state encoding
— output encoding
— possibly input encoding (if under our control)
3 (4) Realize logic to implement functions for states and outputs
— combinational logic implementation and optimization
— choices made in steps 2 and 3 can have large effect on resulting logic
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Finite string pattern recognizer (step 1)

¥ Finite string pattern recognizer
one input (X) and one output (2)
output is asserted whenever the input sequence ...010... has been
observed, as long as the sequence 100 has never been seen

3 Step 1: understanding the problem statement
sample input/output behavior:

X: 00101010010...
Z: 00010101000..

X: 11011010010...
Z: 00000001000..
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Finite string pattern recognizer (step 2)

¥ Step 2: draw state diagram
for the strings that must be recognized, i.e., 010 and 100
a Moore implementation
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Finite string pattern recognizer (step 2, cont’d)

¥ Exit conditions from state S3: have recognized ...010
if next input is 0 then have ...0100 = ...100 (state S6)
if next input is 1 then have ...0101 = ...01 (state S2)

3 Exit conditions from S1: recognizes
strings of form ...0 (no 1 seen)

loop back to S1 if input is 0

3 Exit conditions from S4: recognizes
strings of form ...1 (no 0 seen)
loop back to S4 if input is 1
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Finite string pattern recognizer (step 2, cont’d)

3 S2 and S5 still have incomplete transitions
S2 =..01; If next input is 1,
then string could be prefix of (01)1(00)
S4 handles just this case
S5 =...10; If next inputis 1,
then string could be prefix of (10)1(0)
S2 handles just this case

3 Reuse states as much as possible
look for same meaning

state minimization leads to
smaller number of bits to
represent states

3 Once all states have a complete
set of transitions we have a
final state diagram
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Finite string pattern recognizer

3 Review of process
understanding problem
Xlwrite down sample inputs and outputs to understand specification
derive a state diagram

XIwrite down sequences of states and transitions for sequences to be
recognized

minimize number of states

Xladd missing transitions; reuse states as much as possible
state assignment or encoding

Xlencode states with unique patterns
simulate realization

Xlverify I/O behavior of your state diagram to ensure it matches
specification
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Complex counter

¥ A synchronous 3-bit counter has a mode control M
when M = 0, the counter counts up in the binary sequence
when M = 1, the counter advances through the Gray code sequence

binary: 000, 001, 010, 011, 100, 101, 110, 111
Gray: 000, 001, 011, 010, 110, 111, 101, 100

3 Valid I/O behavior (partial)
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Complex counter (state diagram)

3 Deriving state diagram
one state for each output combination
add appropriate arcs for the mode control
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Digital combinational lock

¥ Door combination lock:

punch in 3 values in sequence and the door opens; if there is an error
the

lock must be reset; once the door opens the lock must be reset

inputs: sequence of input values, reset
outputs: door open/close
memory: must remember combination or always have it available

open questions: how do you set the internal combination?
XIstored in registers (how loaded?)
Xlhardwired via switches set by user
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Determining details of the specification

¥ How many bits per input value?

# How many values in sequence?

# How do we know a new input value is entered?

¥ What are the states and state transitions of the system?

new value  reset

!

clock —»|

l

open/closed
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Digital combination lock state diagram

¥ States: 5 states
represent point in execution of machine
each state has outputs

3 Transitions: 6 from state to state, 5 self transitions, 1 global
changes of state occur when clock says its ok
based on value of inputs

3 Inputs: reset, new, results of comparisons
3 Output: open/closed
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CSE 370 — Spring 2001 - Sequential Logic - 13

Data-path and control structure

¥ Data-path
[l storage re

gisters for combination values

[c1] [c2] [c3]

4
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State table for combination lock

¥ Finite-state machine
refine state diagram to take internal structure into account
state table ready for encoding

S1 S2 c2 closed

0 1 1 S3 OPEN - open
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Encodings for combination lock

3 Encode state table
state can be: S1, S2, S3, OPEN, or ERR
[XIneeds at least 3 bits to encode: 000, 001, 010, 011, 100
Xland as many as 5: 00001, 00010, 00100, 01000, 10000
XIchoose 4 bits: 0001, 0010, 0100, 1000, 0000

output mux can be: C1, C2, or C3 new reset
XIneeds 2 to 3 bits to encode Cg‘n“tﬁol f
Xlchoose 3 bits: 001, 010, 100 ‘ controller
output open/closed can be: open or closed «—
put open/ . p —equar ™ clock
XIneeds 1 or 2 bits to encode
Xlchoose 1 bit: 1, 0 open/closed
next
reset new equal state |state mux open/closed
1 - - - 0001 001 0
0 0 - 0001 |0001 001 O mux is identical to last 3 bits of state
0 1 0 0001 0000 - 0 open/closed is identical to first bit of state
0 1 1 0001 |0010 010 O therefore, we do not even need to implement
FFs to hold state, just use outputs
0 1 1 0100 |[1000 - 1
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Data-path implementation for combination lock

¥ Multiplexer

easy to implement as combinational logic when few inputs
logic can easily get too big for most PLDs

value Cli C2i C3i

[ mux

. I control
[ci] [c2] [c3] Q Q [ ]
4" 4" 4" mux |
[ multiplexer FM _v
4"

|
L
value comparator
4 equal
equal
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Data-path implementation (cont’d)

3 Tri-state logic

utilize a third output state: “no connection” or “float”
connect outputs together as long as only one is “enabled”
open-collector gates can value Cli C2i G3i
only output 0, not 1
Xcan be used to implement " mux
logical AND with only wires

V’ ?;J ?J control

LD
L
(] [c2] [c3] 2 v
4 v 4" 4 A4 mux
[ multiplexer kLtrOI tri-state driver
4 (can disconnect
v equal from output)
value—~—{_comparator |——/———*
4 equal

open-collector connection
(zero whenever one connection is zero,
one otherwise — wired AND)
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Section summary

¥ FSM design
understanding the problem
generating state diagram
implementation using synthesis tools
iteration on design/specification to improve qualities of mapping
communicating state machines

3 Three case studies
understand 1/0O behavior
draw diagrams
enumerate states for the "goal"
expand with error conditions
reuse states whenever possible
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