
CSE 370 – Spring 2001 - Sequential Logic - 1

Sequential Circuits

! Another way to understand setup/hold/propagation time

Comb
FFs

inputs
OutputsComb

CLK

CSE 370 – Spring 2001 - Sequential Logic - 2

Sequential logic examples

! Finite state machine concept
" FSMs are the decision making logic of digital designs
" partitioning designs into datapath and control elements
" when inputs are sampled and outputs asserted

! Basic design approach: a 4-step design process

! Implementation examples and case studies
" finite-string pattern recognizer
" complex counter
" traffic light controller
" door combination lock

CSE 370 – Spring 2001 - Sequential Logic - 3

General FSM design procedure

! (1) Determine inputs and outputs

! (2) Determine possible states of machine
" � state minimization

! (3) Encode states and outputs into a binary code
" � state assignment or state encoding
" � output encoding
" � possibly input encoding (if under our control)

! (4) Realize logic to implement functions for states and outputs
" � combinational logic implementation and optimization
" � choices made in steps 2 and 3 can have large effect on resulting logic

CSE 370 – Spring 2001 - Sequential Logic - 4

Finite string pattern recognizer (step 1)

! Finite string pattern recognizer
" one input (X) and one output (Z)
" output is asserted whenever the input sequence �010� has been

observed, as long as the sequence 100 has never been seen

! Step 1: understanding the problem statement
" sample input/output behavior:

X: 0 0 1 0 1 0 1 0 0 1 0 �
Z: 0 0 0 1 0 1 0 1 0 0 0 �

X: 1 1 0 1 1 0 1 0 0 1 0 �
Z: 0 0 0 0 0 0 0 1 0 0 0 �

CSE 370 – Spring 2001 - Sequential Logic - 5

Finite string pattern recognizer (step 2)

! Step 2: draw state diagram
" for the strings that must be recognized, i.e., 010 and 100
" a Moore implementation

S1
[0]

S2
[0]

0

1

S3
[1]

0

S4
[0]

1

0 or 1

S5
[0]

0

0

S6
[0]

S0
[0]

reset

CSE 370 – Spring 2001 - Sequential Logic - 6

Finite string pattern recognizer (step 2, cont�d)

! Exit conditions from state S3: have recognized �010
" if next input is 0 then have �0100 = ...100 (state S6)
" if next input is 1 then have �0101 = �01 (state S2)

1
...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

10

1

reset

0 or 1S3
[1]

0

S5
[0]

0

0

S6
[0]

! Exit conditions from S1: recognizes
strings of form �0 (no 1 seen)
" loop back to S1 if input is 0

! Exit conditions from S4: recognizes
strings of form �1 (no 0 seen)
" loop back to S4 if input is 1

...1...0
10

CSE 370 – Spring 2001 - Sequential Logic - 7

Finite string pattern recognizer (step 2, cont�d)

! S2 and S5 still have incomplete transitions
" S2 = �01; If next input is 1,

then string could be prefix of (01)1(00)
S4 handles just this case

" S5 = �10; If next input is 1,
then string could be prefix of (10)1(0)
S2 handles just this case

! Reuse states as much as possible
" look for same meaning
" state minimization leads to

smaller number of bits to
represent states

! Once all states have a complete
set of transitions we have a
final state diagram

1
...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

10

1

reset

0 or 1S3
[1]

0

S5
[0]

0

0

S6
[0]

...1...0
10

...10

1

1

CSE 370 – Spring 2001 - Sequential Logic - 8

Finite string pattern recognizer

! Review of process
" understanding problem

⌧write down sample inputs and outputs to understand specification
" derive a state diagram

⌧write down sequences of states and transitions for sequences to be
recognized

" minimize number of states
⌧add missing transitions; reuse states as much as possible

" state assignment or encoding
⌧encode states with unique patterns

" simulate realization
⌧verify I/O behavior of your state diagram to ensure it matches

specification

CSE 370 – Spring 2001 - Sequential Logic - 9

Mode Input M
0
0
1
1
1
0
0

Current State
000
001
010
110
111
101
110

Next State
001
010
110
111
101
110
111

Complex counter

! A synchronous 3-bit counter has a mode control M
" when M = 0, the counter counts up in the binary sequence
" when M = 1, the counter advances through the Gray code sequence

binary: 000, 001, 010, 011, 100, 101, 110, 111
Gray: 000, 001, 011, 010, 110, 111, 101, 100

! Valid I/O behavior (partial)

CSE 370 – Spring 2001 - Sequential Logic - 10

Complex counter (state diagram)

! Deriving state diagram
" one state for each output combination
" add appropriate arcs for the mode control

S0
[000]

S1
[001]

S2
[010]

S3
[011]

S4
[100]

S5
[101]

S6
[110]

S7
[111]

reset

0

0 0 0 0000
1

1

1
1

11

11

CSE 370 – Spring 2001 - Sequential Logic - 11

Digital combinational lock

! Door combination lock:
" punch in 3 values in sequence and the door opens; if there is an error

the
lock must be reset; once the door opens the lock must be reset

" inputs: sequence of input values, reset
" outputs: door open/close
" memory: must remember combination or always have it available

" open questions: how do you set the internal combination?
⌧stored in registers (how loaded?)
⌧hardwired via switches set by user

CSE 370 – Spring 2001 - Sequential Logic - 12

resetvalue

open/closed

new

clock

Determining details of the specification

! How many bits per input value?

! How many values in sequence?

! How do we know a new input value is entered?

! What are the states and state transitions of the system?

CSE 370 – Spring 2001 - Sequential Logic - 13

Digital combination lock state diagram

! States: 5 states
" represent point in execution of machine
" each state has outputs

! Transitions: 6 from state to state, 5 self transitions, 1 global
" changes of state occur when clock says its ok
" based on value of inputs

! Inputs: reset, new, results of comparisons

! Output: open/closed

closed closedclosed
C1==value

& new
C2==value

& new
C3==value

& new

C1!=value
& new C2!=value

& new
C3!=value

& new

closed

reset

not newnot newnot new

S1 S2 S3 OPEN

ERR

open

CSE 370 – Spring 2001 - Sequential Logic - 14

reset

open/closed

newC1 C2 C3

comparatorvalue
equal

multiplexer

controller

mux
control

clock
4

4 4 4

4

Data-path and control structure

! Data-path
" storage registers for combination values
" multiplexer
" comparator

! Control
" finite-state machine controller
" control for data-path (which value to compare)

CSE 370 – Spring 2001 - Sequential Logic - 15

State table for combination lock

! Finite-state machine
" refine state diagram to take internal structure into account
" state table ready for encoding

reset new equal state state mux open/closed
1 � � � S1 C1 closed
0 0 � S1 S1 C1 closed
0 1 0 S1 ERR � closed
0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN � open
...

next

CSE 370 – Spring 2001 - Sequential Logic - 16

reset new equal state state mux open/closed
1 � � � 0001 001 0
0 0 � 0001 0001 001 0
0 1 0 0001 0000 � 0
0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 � 1
...

next

mux is identical to last 3 bits of state
open/closed is identical to first bit of state
therefore, we do not even need to implement
FFs to hold state, just use outputs

reset

open/closed

new

equal

controller

mux
control

clock

Encodings for combination lock

! Encode state table
" state can be: S1, S2, S3, OPEN, or ERR

⌧needs at least 3 bits to encode: 000, 001, 010, 011, 100
⌧and as many as 5: 00001, 00010, 00100, 01000, 10000
⌧choose 4 bits: 0001, 0010, 0100, 1000, 0000

" output mux can be: C1, C2, or C3
⌧needs 2 to 3 bits to encode
⌧choose 3 bits: 001, 010, 100

" output open/closed can be: open or closed
⌧needs 1 or 2 bits to encode
⌧choose 1 bit: 1, 0

CSE 370 – Spring 2001 - Sequential Logic - 17

C1 C2 C3

comparator equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

value

equal

Data-path implementation for combination lock

! Multiplexer
" easy to implement as combinational logic when few inputs
" logic can easily get too big for most PLDs

CSE 370 – Spring 2001 - Sequential Logic - 18

C1 C2 C3

comparator
equal

multiplexer

mux
control

4

4 4 4

4
value

C1i C2i C3i

mux
control

value

equal

+ oc

open-collector connection
(zero whenever one connection is zero,

one otherwise � wired AND)

tri-state driver
(can disconnect

from output)

Data-path implementation (cont�d)

! Tri-state logic
" utilize a third output state: �no connection� or �float�
" connect outputs together as long as only one is �enabled�
" open-collector gates can

only output 0, not 1
⌧can be used to implement

logical AND with only wires

CSE 370 – Spring 2001 - Sequential Logic - 19

Section summary

! FSM design
" understanding the problem
" generating state diagram
" implementation using synthesis tools
" iteration on design/specification to improve qualities of mapping
" communicating state machines

! Three case studies
" understand I/O behavior
" draw diagrams
" enumerate states for the "goal"
" expand with error conditions
" reuse states whenever possible

