_ Sequential logic

O Up until now, we've built combination circuits: outputs are just a function of
the inputs.

QO Now, we get into circuits with feedback.

X1 —> — Z1
X2 —> —> Z2
. Combinational .
. logic .
Xn —* — Zn

CSE 370 - Fall 1999 - Introduction - 1

_ Sequential logic diagram

X1 —» — Z1
X2 —» — 22
. Combinational .
. logic .
. .
Xn —» — Zn

Q But, how do we know that the outputs Z1..Zn will stabilize? Isn't possible that
the outputs will endlessly change, never reaching a stable state?

Q Yes, this can happen! We will have to make sure that perpetual osciallation
doesn’t happen (unless we WANT it to happen...)

CSE 370 - Fall 1999 - Introduction - 2

_ Sequential logic: what’s the point?

QO But, feedback seems to make things more complicated (e.g.: need to make
sure things don't oscillate). So what's the point?
Q Well, feeding outputs back into inputs lets us do interesting things, like...
» memory!
> osdillating circuits!

CSE 370 - Fall 1999 - Introduction - 3

_ Experiment a little

QO Let's start experimenting with feedback.
Disable
o

Q This circuits oscillates because there are an odd number of inversions in the
feedback. So... what happens if we only have an even number of inversions
in the feedback? Let's take a look.

CSE 370 - Fall 1999 - Introduction - 4

_ Cascaded inverters

i 5 v

Q IF Ais™1”, then B is “0”, which forces A again to “1”, which forces B again to
“0”, and so on. Thus, the ouput Y is “1”, and stays “1” forever. This is a
steady state (contrast this to the oscillator you did in your assignment).

Similarly, IF Ais “0”, then Y will stay at “0” forever.

Wow, this looks like a bit of memory (if you ignore the magical IF...)

But, wait a second... How can this circuit store a value forever, it doesn’t
seem to be using any power: after all we are not applying any inputs...

This is a common fallacy! Remember, we don't draw the power supplies, but
they are ASSUMED to be there.

0Ooo

[u]

CSE 370 - Fall 1999 - Introduction - 5

_ Cascaded inverters (cont’d)

2 = 2

Q In describing this circuit, we used the magical IF. But what happens if you
build this in the lab? Which state will it go in? Will it go into one of the two
states described before (Y = "0, or Y = “1")? Or is there a possibility that A
and B will just remain undefined (maybe both will stay at 2.5 Volts...)

0 Well, in theory this circuit has an undefined behavior. But if you build it, it
WILL go into one of the two states. Why?

> Say the circuit lands in an undefined state, maybe A=2.5 Volts, and B =
2.5 Volts.

» The only way you'll stay in this state is if you are in perfect equilibrium.

» But then, any perturbation in A or B (caused maybe by electromagnetic
radiation from the moon...) will cause your circuit to spiral towards one of
the two states.

O What's worse is that we don’t know what state it will go in! That’s not
good... We need a way to guarantee that we land in the state we WANT.

CSE 370 - Fall 1999 - Introduction - 6

_ Cascaded inverters with “Set”

O Think of the switch as a push button, with the default state as shown. When
you activate the button, it connects a “1” to the input of the first inverter.
When you release the button, it bounces back to the default state.

Q When you push the button, the loop is broken. The effect is that it sets Y to
“1”. When we release the button, the value of “1” at the output remains
there.

Q We'll call this a “Set” (we're setting the output...). This is good, but this
means we can only store a “1”. What about a “0"?

CSE 370 - Fall 1999 - Introduction - 7

_ Cascaded inverters with “Set” and “Reset”

1

- 1[:

Q0 Add a “Reset” switch, which makes the output Y go to 0. Again, when the
switch is released, Y stays at 0.

0 What happens if none of the switches are pressed? Well, the value of Y that
was there before will stay there. This is called a “Hold".

Q So, we have a one bit of memory that we can set, reset, or just leave as is.

Q0 Now, pushing switches is not a scalable solution. We need to control our
memory cell with digital signals:

CSE 370 - Fall 1999 - Introduction - 8

_ Cascaded inverters with “Set” and “Reset”

e Fesee

O Now, take a look at the black boxes above. Each has two inputs. When the
first input is 1, the output should go to 0, whereas when the first input is 0,
then the output should be the negation of the second input. What is that?

CSE 370 - Fall 1999 - Introduction - 9

_ Cascaded inverters with “Set” and “Reset”

e Besne

QO The black boxes are NOR! So we can redraw the circuit with NORs instead of
the black boxes:

Beset
Rearranging

B p—r—
and renaming

CSE 370 - Fall 1099 - Introduction - 10

_ Cross-coupled NOR gates

B

Q This is called an RS latch. We can build a table that shows how this circuit

behaves:
s R Q0
0 o0 hold
0 1 [
10 1
1 1 e

Q0 What happens in the 1, 1 state? At first, both Y and Y’ will be O (that’s
already a problem, since that means we can't call them Y and Y'...). But,
then, if you “release” the S and R inputs (thus, setting S=0, and R=0), Y and
Y’ will oscillate. Forever!

QO So... We DISALLOW this state.

CSE 370 - Fall 1999 - Introduction - 11

_ RS Latch

O R-S latch always samples its inputs. L] o

O That means that a glitch in the inputs is fatal (called
the 1's catching problem). Wouldn't it be great if the
latch didn't always sample its inputs? That way, we
wouldn't be required to build hazard free circuits
(which lessens not only the design time, but also the
hardware).

Q First attempt at solving this: use an enable signal. Note inverted inputs

> When latch is enabled, Set and Reset work.
» When latch is disabled, hold.

Bubbleintroduction and
propagation

CSE 370 - Fall 1999 - Introduction - 12

_ Carry-lookahead logic

_ Carry-lookahead logic (cont’d)

O Re-express the carry logic as follows:
» Cl=G0+P0CO
» C2=G1+P1Cl=G1+P1G0+ P1P0CO
» C3=G2+P2C2=G2+P2Gl +P2P1G0 + P2P1P0CO
» C4=G3+P3C3=G3+P3G2+P3P2G1 +P3P2P1G0
+ P3 P2 P1 PO CO

CSE 370 - Fall 1999 - Introduction - 14

QO Carry generate: Gi = Ai Bi
» must generate carry whenA =B =1
Q Carry propagate: Pi = Ai xor Bi
» carry-in will equal carry-out here
0 Sum and Cout can be re-expressed in terms of generate/propagate:
» Si = AixorBixorCi
= Pi xor Ci
» Ci+1 =Gi + Ci Pi
CSE 370 - Fall 1999 - Introduction - 13
Carry-lookahead adder
_ with cascaded carry-lookahead logic _

Q Carry-lookahead adder
> 4 four-bit adders with internal carry lookahead
> second level carry lookahead unit extends lookahead to 16 bits

P G G

"
si812]

[
@8 gy (@3

Lookahead Carry Unit

P3-0 G3-0

Col

FB f&s

CSE 370 - Fall 1999 - Introduction - 15

(o]

_ Carry-select adder

O Redundant hardware to make carry calculation go faster
» compute two high-order sums in parallel while waiting for carry-in
» one assuming carry-in is 0 and another assuming carry-in is 1
> select correct result once carry-in is finally computed

4-bit adder
[7:4] o
0
adder
low
five |[10{10)10/10/10| cq4 4-Bit Adder @
2:1 mux [3:0]

Ebebl BLbdk

CSE 370 - Fall 1099 - Introduction - 16

