Combinational logic implementation

O Two-level logic
O implementations of two-level logic
O NAND/NOR
O Multi-level logic
0 factored forms
O and-or-invert gates
0 Time behavior
O gate delays
0 hazards
O Regular logic
O multiplexors
O decoders
O PAL/PLAs
0 ROMs

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 1

Two-level logic using NAND gates

O Replace minterm AND gates with NAND gates
O Place compensating inversion at inputs of OR gate —

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 3

Implementations of two-level logic

0 Sum-of-products b
O AND gates to form product terms (minterms)
O OR gate to form sum

0 Product-of-sums

O OR gates to form sum terms (maxterms) T2

O AND gates to form product

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 2

Two-level logic using NOR gates

[0 Replace maxterm OR gates with NOR gates
[Place compensating inversion at inputs of AND gate —

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 5

Two-level logic using NAND gates (cont’d)

O OR gate with inverted inputs is a NAND gate —————————————

O de Morgan's: A'+B =(AeB)
0 Two-level NAND-NAND network
O inverted inputs are not counted

O in a typical circuit, inversion is done once and signal distributed

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 4

=

Two-level logic using NOR gates (cont’d)

O AND gate with inverted inputs is a NOR gate
O de Morgan's: A'eB' = (A +B)

0O Two-level NOR-NOR network
O inverted inputs are not counted

O in a typical circuit, inversion is done once and signal distributed

DS

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 6

1 >

Two-level logic using NAND and NOR gates

0 NAND-NAND and NOR-NOR networks

O de Morgan'slaw: (A+B) = A'eB' (AeB) = A'+PB

O written differently: A+B = (A"« B (AeB) = (A+B'Y
In other words —

O ORis the same as NAND with complemented inputs

O AND is the same as NOR with complemented inputs

O NAND is the same as OR with complemented inputs

[NOR is the same as AND with complemented inputs

)

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 7

Conversion between forms (cont’d)

0 Example: verify equivalence of two forms

s:i::>“7i::}_iz s:jﬁﬁ>’if

=L =D

Z=[(AB) (C Dy T
=[(A+B) + (C+D) T
=[(A+B)+(C+D)]
= (A+B) +(CeD) O

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 9

Conversion between forms

0 Convert from networks of ANDs and ORs to networks of NANDs and NORs
O introduce appropriate inversions ("bubbles™)

O Each introduced "bubble"” must be matched by a corresponding "bubble”
O conservation of inversions
O do not alter logic function

O Example: AND/OR to NAND/NAND

A
—s
>
C_ ‘7
p—
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 8

Juidy— 2

Conversion between forms (cont’d)

0 Example: verify equivalence of two forms

Z={ [W+B)+(C+Dy I'¥
{ W+B)«(C+D) ¥
= (A+BY+(C+DY
(A«B)+(CeD) D

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 11

Conversion between forms (cont’d)

0 Example: map AND/OR network to NOR/NOR network

Nﬁj::D*‘L

conserve conserve
"bubbles” "bubbles”
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 10

Multi-level logic

0O x=ADF + AEF + BDF + BEF + CDF + CEF + G
O reduced sum-of-products form — already simplified
O 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)
0 25 wires (19 literals plus 6 internal wires)
0O x=(A+B+C)(D+E)F + G
O factored form — not written as two-level S-o0-P
O 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
[10 wires (7 literals plus 3 internal wires)
A—

B —] -
¢ - - - — X

o— |
= |

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 12

Conversion of multi-level logic to NAND gates

Level 1 Level 2 Level 3 Level 4

0 F=A(B+CD)+BC 51

original g

AND-OR A
network

B}

\

c

D]

introduction and B
conservation of
bubbles

B

\]

redrawn in terms D]
of conventional \B.

U

NAND gates A

OO

B[O O oIC

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 13

Conversion between forms

0 Example
A A
@) B B
C X —F C
D D

original circuit

(b)
X

add double bubbles at inputs

A
A X
B = F
© % s@é F @
0 c ™
\D

distribute bubbles
some mismatches

insert inverters to fix mismatches

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 15

Conversion of multi-level logic to NORs

Level 1 Level 2 Level 3 Level 4

O F=A(B+CD)+BC c
s = ==
network A ’7

C o
introduction and [é o

conservation of

bubbles A
B o
\

o

T A SR

VIO]IE0[0

o
\D] -
redrawn in terms N D D :D»—EDrF
of conventional \A ’7
NOR gates
\B}
[l
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 14

AND-OR-invert gates

O AOQI function: three stages of logic — AND, OR, Invert
O multiple gates "packaged" as a single circuit block

logical concept possible implementation

oo @>
I
N
o0 w>
N

AND OR Invert NAND NAND Invert

2x2 AQI gate E 3x2 AQI gate E
+ b + b
symbol H symbol H

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 16

Conversion to AOI forms

O General procedure to place in AQCI form

O compute the complement of the function in sum-of-products form
O by grouping the Os in the Karnaugh map
0 Example: XOR implementaton — AxorB=A'B + AB'

O AQIform: F=(A'B' + AB)

o
Bl 1 @

A
B

> H
B'
+ -

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 17

Examples of using AOI gates

0 Example:
OF=BC+AC+AB A
OF=AB+AC+BC o 1) 1)1
O Implemented by 2-input 3-stack AOI gate clolo|1]o
OF=(A+B)(A+C)(B+C) °
OF=(B+C)(A+C) (A +B)
O Implemented by 2-input 3-stack OAI gate

O Example: 4-bit equality function
0 Z = (A0 BO + AO' BO'")Y(A1 B1 + A1' BI')(A2 B2 + A2' B2')(A3 B3 + A3' B3')

each implemented in a single 2x2 AOI gate

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 18

Examples of using AOI gates (cont’d)

[0 Example: AOI implementation of 4-bit equality function

& high if AO # BO
. low if AO = BO
& r~

conservation of bubbles

iR 2
\if all inputs are low

& then Ai = Bj, i=0,...,3
output Z is high

AO.
BO-

SIgige!
=

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 19

Summary for multi-level logic

O Advantages
O circuits may be smaller
O gates have smaller fan-in
O circuits may be faster
O Disadvantages
O more difficult to design
O tools for optimization are not as good as for two-level
O analysis is more complex

Time behavior of combinational networks

0 Waveforms
O visualization of values carried on signal wires over time
0 useful in explaining sequences of events (changes in value)
0 Simulation tools are used to create these waveforms
0 input to the simulator includes gates and their connections
0 input stimulus, that is, input signal waveforms
0 Some terms
O gate delay — time for change at input to cause change at output
0 min delay - typical/nominal delay — max delay
0O careful designers design for the worst case
O rise time — time for output to transition from low to high voltage
O fall time — time for output to transition from high to low voltage
O pulse width — time that an output stays high or stays low between changes

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 20

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 21

Momentary changes in outputs

O Can be useful — pulse shaping circuits

O Can be a problem — incorrect circuit operation (glitches/hazards)

0 Example: pulse shaping circuit A B c D
OA«A=0 > > F

O delays matter in function

=3

mo o ®

7Lr—1—
D remains high for \

three gate delays after Fis not always 0
A changes from low to high pulse 3 gate-delays wide

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 22

Oscillatory behavior

O Anocther pulse shaping circuit T
0 NOT combinational logic! resistor?
A B

open C
swwchl > D

close switch =

initia.lly open switch
undefined
% / 100 200

I

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 23

Hazards/glitches

O Hazards/glitches: unwanted switching at the outputs
O occur when different paths through circuit have different propagation delays
O as in pulse shaping circuits we just analyzed
O dangerous if logic causes an action while output is unstable
[may need to guarantee absence of glitches
O Usual solutions
[1) wait until signals are stable (by using a clock)
preferable (easiest to design when there is a clock — synchronous design)
O 2) design hazard-free circuits
sometimes necessary (clock not used — asynchronous design)

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 24

Types of hazards

O Static 1-hazard i 1
O input change causes output togo from 1to 0 to 1 0

O Static 0-hazard 1
O input change causes output to go from 0 to 1 to 0 0 Y

0 Dynamic hazards

O input change causes a double change 0 1 | 0 1
fromOto1to0to 1O0Rfrom1toOtolto0
1 1
0 0
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 25

Static hazards

O Due to a literal and its complement momentarily taking on the same value
O through different paths with different delays and reconverging

O May cause an output that should have stayed at the same value
to momentarily take on the wrong value

0 Example: multiplexer

Dynamic hazards

O Due to the same versions of a literal taking on opposite values
O through different paths with different delays and reconverging

[0 May cause an output that was to change value
to change 3 times instead of once

0 Example:

S T 1 hezard
dynamic hazards

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 27

hazard
static-0 hazard static-1 hazard
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 26

Mux and demux

00 Switch implementation of multiplexers and demultiplexers
O can be composed to make arbitrary size switching networks
O used to implement multiple-source/multiple-destination interconnections

A M v
<
B w z
A Y
B o o z
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 29

Making connections

O Direct point-to-point connections between gates
0 wires we've seen so far

[Route one of many inputs to a single output --- multiplexer
O Route a single input to one of many outputs --- demultiplexer

e e U

I —

multiplexer demultiplexer 4x4 switch

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 28

Mux and demux (cont'd)

O Uses of multiplexers/demultiplexers in multi-point connections

AD Al BO B1

sb multiple input sources

multiple output destinations

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 30

Multiplexers/selectors

[Multiplexers/selectors: general concept
O 2" data inputs, n control inputs (called "selects"), 1 output
O used to connect 2" points to a single point
O control signal pattern forms binary index of input connected to output

Alz
Z=A1, +AL ‘1’ iv
1

//

A
0
1
0
1
0
1
0
1

functional form
logical form

two alternative forms
for a 2:1 Mux truth table

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 31

Multiplexers/selectors (cont'd)

0 2:1 mux: Z=AI10+AIl
0 4:1 mux: Z=ABI0O+ABIL+ABI2+ABI3

0 8:1mux: Z=ABCI0O+ABCI1+ABCIR2+ABCI3+
AB'CI4+AB'CI5 +ABC'I6 +ABCI7

2N
O Ingeneral, Z= zk=0 (mily)

Gate level implementation of muxes

0 2:1 mux E E
0 4:1 mux

]]
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 33

10—
. . n
0 in minterm shorthand form for a 2M:1 Mux 12::
B— g1
A mux | 2
10—>| I5—»|
In— 41 16—>|
10— 22— mwx [¢ 17—
11— 13— I L T
i ¢
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 32
Cascading multiplexers
O Large multiplexers can be implemented by cascading smaller ones
10— 8:1
11—p 41 mux
g :: mux 1 alternative
L,z implementation
LS ¢ 8:1
15 —P| 11 mux
16 —P| mu:
17 =P
| .
BC A r:ulx m?

control signals B and C simultaneously choose
one of 10, I1, 12, I3 and one of 14, I5, 16, 17

control signal A chooses which of the
upper or lower mux's output to gate to Z

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 34

Multiplexers as general-purpose logic

0 A 2™:1 multiplexer can implement any function of n variables
O with the variables used as control inputs and
O the data inputs tied to 0 or 1
O in essence, a lookup table
0O Example:
0 F(A,B,C) =m0 + m2 + m6 + m7
= A'B'C' + ABC' + ABC' + ABC
= A'B'(C") + AB(C") + AB'(0) + AB(1)

gimux > F

mroooror
L
Soaswneo

S2 S1 S0

A B C

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 35

Multiplexers as general-purpose logic (cont’d)

0 A2 multiplexer can implement any function of n variables
O with n-1 variables used as control inputs and
the data inputs tied to the last variable or its complement

)

0 Example:
0 F(A,B,C) =m0 + m2 + m6 + m7
= A'B'C' + A'BC' + ABC' + ABC
= AB(C) + AB(C') + AB'(0) + AB(1)

1 —o

0 —1 A B cC|F
1 o 0 00 [T c—h
0 3 0o o0 |1 o e F
o _lagimux > F 0 1[0 |1 o b 41mux | —»
o s 0o 1|1 o 1k
1 e T 0]0 [0, S1 so
17 1 0|1 o [

s2 S1 S0 110ty A B

1 1 1 1
A B C
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 36

Multiplexers as general-purpose logic (cont’d) Demultiplexers/decoders
O Generalization I, I, [Decoders/demultiplexers: general concept
-1 mux control four possible O single data input, n control inputs, 2" outputs
variables g‘f”t‘fﬂﬁ'fatﬁgsmws 0 control inputs (called “selects” (S)) represent binary index of output to
single mux data can be expressed which the input is connected
variable as a function of I, 0 data input usually called “enable” (G)
[0 Example: F(A,B,C,D) can be implemented by an 8:1 MUX 1:2 Decoder: 3:8 Decoder:
A 1 —o 00=G. & 00=G+ S2'+ S1'+ SO
=T — b1 O1=G+ S S2'+ S1'+ SO
1o [|1f]|t cl)—g S2'+ S1 + S0
choose A,B,C as control 4 g > __2:4 Decoder: S2'+ S1 « SO
BRI IR S variables o & Bamux 00=G- S1'» SO0' 2+ SIS0
T T H T o _le 01=Ge+ S1’« SO S2 - S17+ SO
c multiplexer implementation D _|7 02=Ge+ S1 + SO S2 + S1 - S0
oll 11/l]o S2 S1 S0 03=G+ S1 - SO S2 + S1 +50
A B C
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 37 1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 38
Gate level implementation of demultiplexers Demultiplexers as general-purpose logic
0 1:2 decoders acg;eamiegh acg;;'few O A n:2n decoder can implement any function of n variables
G o \G o [with the variables used as control inputs
s s O the enable inputs tied to 1 and
o1 o1 O the appropriate minterms summed to form the function
0 2:4 decoders
G D \G | 0= aBC
il o VADOO % [ast d Itipl t iat
active-high active-low — A'BC' lemultiplexer generates appropriate
enable »7:D01 enable —DOI . 3+ ABC minterm based on control signals
| 1"—» 3. 4 ' it " n i
3:8 DEC s — AB'C (it "decodes" control signals)
f 02 - 2 — AB'C
=D E=EDY £ s
ABC
FEL)03 = D03 s2 s1 50|
B |64 ABoC
S1 S0 S1 S0
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 39 1/19/00 CSE 370 - Winter 2000 - Combinational \me\ememamn -40
Demultiplexers as general-purpose logic (cont’d) Cascading decoders
0 FIl=ABCD+ABCD+ABCD 0 5:32 decoder
' oy . 0 |—> ABCDE of—
0 F2=ABCD +ABC 0 >aBCD . ix;.g jecojer = I e
= ! 3 " 3 1 —ABCD 0 4x3: iecoaers — —» ABC'DE'
0 F3=(A+B+C+D) 2 LsaBCD ’j F1 3:8 DEC;' : > 3:8 DECE‘::
3 —>ABCD 5> 5
4 —>ABCD' s> 6>
5 —>ABCD s1sh ™ —
6 —>ABCD' 0
4:16 7 —>ABCD F —»|2:4 DEC 1
Enable —» pgc 8 [—>ABCD' ,D F2 sisp 3
9 —»ABCD] > o[> ABCDE
10 —>AB'CD' A B — Hing
11 —>AB'CD — —
D" ¥ —> 31—
12 —»ABC'D' :8 DECS |5 > 38 pEC S
13 —»ABC'D e 5>
14 —»ABCD' > 6—>
15 »ABCD D - o <f | ABCDE | ABCDE
[TT] c bk e bk
ABCD
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 41 1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 42

Programmable logic arrays

O Pre-fabricated building block of many AND/OR gates
O actually NOR or NAND
O "personalized" by making or breaking connections among the gates
O programmable array block diagram for sum of products form

l linputs l
AND product OR
array array
terms
outputs
.
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 43

Enabling concept

[Shared product terms among outputs

0

FO =
example: F
i F.

F3 =

input side:

personality matrix

1 = uncomplemented in term
= complemented in term

product ‘ inputs outputs — = does not participate
term A B C |FO F1 F2 F3)
AB 1 1 - |0 1 1 o0 output side:
B'C - 0 1 0 0 0 1 1 = term connected to output
AC' i - olo 1 0o o 0 = no connection to output
B P S reuse of terms
A 1 - - J1 0 0 1
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 44

Before programming

O All possible connections are available before "programming”
O in reality, all AND and OR gates are NANDs

IVl

“b%“b

A

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 45

After programming

O Unwanted connections are "blown"

O fuse (normally connected, break unwanted ones)

O anti-fuse (normally disconnected, make wanted connections)
A B C

YIY]
eI
S

NAC
HL

IR
Fy F R Fy

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 46

Alternate representation for high fan-in structures

0 Short-hand notation so we don't have to draw all the wires
O x signifies a connection is present and perpendicular signal is an input
to gate

notation for implementing
L FO=AB + A'B'

™ -cp +C
FL=CD + C'D
) ABCD
[L1
)
) ™) AB
) :/\
- A'B
v o
) <D
AB+A'B'
CD'+C'D

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 47

Programmable logic array example

00 Multiple functions of A, B, C full decoder as for memory address

OF1=ABC / bits stored in memory

A BC
OF2=A+B+C o e e ey
OF3=ABC ABC
0 5 = Aver8orC =
= A xor B xor 'BC'
A'BC
[F6 = A xnor B xnor C /) A'BC
[—
) !
AB'C
ABC —
000 D, ABC
001) .
010) ABC’
011) ABC
100 L/
1 1
110
111 F1 F2 F3 F4 F5
F6
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 48

PALs and PLAs

0 Programmable logic array (PLA)
O what we've seen so far
O unconstrained fully-general AND and OR arrays

O Programmable array logic (PAL) L1
O constrained topology of the OR array
O innovation by Monolithic Memories
[faster and smaller OR plane

a given column of the OR array
has access to only a subset of
the possible product terms

JUJUUUUL

VUV

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 49

PALs and PLAs: design example

O BCD to Gray code converter

PALs and PLAs: design example (cont’d)

O Code converter: programmed PLA minimized functions:

KESR W=A+BD+BC
X=BC
A Y=B+C
Z=ABCD+BCD+AD +B'CD
T T
BC
BC' not a particularly good
candidate for PAL/PLA
B implementation since no terms
¢ are shared among outputs
ABCD
BCD
AD' however, much more compact
and regular implementation
BCD! when compared with discrete
AND and OR gates
WX Y Z
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 51

PALs and PLAs: design example (cont’d)

[0 Code converter: NAND gate implementation
O loss or regularity, harder to understand
O harder to make changes

A‘{>¢F

B
D
B
C

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 53

A A
A B C D|W X Y zZ T 11
000010 0 00 olo|x]|1 o1x]o
000 0 1]/0 0 0 1 ol x4, ofa]x]ofy
A O e KGR
001 0 00 1 1 0 o Ll olox]x
0 1 0 1|1 1 1 0 8 8
0o 1 1 0|1 0 1 0
0 1 1 1 1 0 1 1 K-map for W K-map for X
1 0 0 0|1 0 0 1 A A
1 0 0 1|1 0 0 © E—
1 01 -|- - - - o1 [x]|lo 00 |x|1
L o1 |xjolf, oxoD
minimized functions: | x][x] cfo [ilx] x
L [Dl 1[0 [[x |Ix
W=A+BD+BC = T
X=BC
Y=B+C : :
Z=ABCD+BCD+AD +BCD' Kemap for ¥ Kemap for 2
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 50
PALs and PLAs: design example (cont’d)
ABED
0 Code converter: programmed PAL A
BD
[BC
L 0
B8C
0
4 product terms 0
per each OR gate 0
B
c
0
0
ABCD
BCD|
AD'
VU=
WX Y Z
1/19/00 CSE 370 - Winter 2000 - Combinational \me\ememamn -52
PALs and PLAs: another design example
ARSD
0 Magnitude comparator
ABCD'
o 1 A'BCD
lﬂ o [[l ABCD
110 II AB'CD'
L[]0 AC
] .
AC
K-map for NE BD
A BD'
olojo o |Gl] ABD
olojol, ofofslalfy B'CD
[l |i]] clololo]e ABC
1o o oo][]jo BCD'
: n VU
K-map for LT K-map for GT T

T T
EQ NE LT GT

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 54

Read-only memories

word lines (only one

O Two dimensional array of 1s and 0s
is active — decoder is

O entry (row) is called a "word" just right for this)
0 width of row = word-size
i i n " 11 1 1
0 index is called an "address NVNRVNEVN
[address is input
0 selected word is output 2"
i word[i] = 0011
decoder L‘i L‘i] = 1010
j = word([j] =
I T
0
internal organization ‘ ‘ ‘ ‘ ‘ ‘
0 n-1
Address
bit lines (normally pulled to 1 through
resistor — selectively connected to 0
by word line controlled switches)
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 55

ROMSs and combinational logic

[0 Combinational logic implementation (two-level canonical form) using a ROM

FO=A'B'C + AB'C + AB'C
F1=A'B'C + ABC + ABC
F2=A'B'C' + AB'C + AB'C
F3=A'BC + AB'C' +ABC

ROM structure

O Similar to a PLA structure but with a fully decoded AND array
O completely flexible OR array (unlike PAL)

n address lines

l l inputs l
memory
decoder 27 word array
lines (2" words
by m bits)
outputs
“ e
m data lines
1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 57

ABCIFO F1 F2 F3

0000 0 1 O ROM

0011 1 1 0 8 words x 4 bits/word

0100 1 00

0110 0 0 1

1001 0 1 1 T T T

1011 0 0 0O

1100 0 0 1 A B C FOFLF2F3

1110 1 0 0 address outputs

truth table block diagram

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 56
ROM vs. PLA

0 ROM approach advantageous when
[design time is short (no need to minimize output functions)
[most input combinations are needed (e.g., code converters)
O little sharing of product terms among output functions
0 ROM problems
O size doubles for each additional input
O can't exploit don't cares
0 PLA approach advantageous when
O design tools are available for multi-output minimization
O there are relatively few unique minterm combinations
O many minterms are shared among the output functions
0O PAL problems
O constrained fan-ins on OR plane

Regular logic structures for two-level logic

0 ROM - full AND plane, general OR plane
O cheap (high-volume component)
O can implement any function of n inputs
O medium speed
0 PAL - programmable AND plane, fixed OR plane
O intermediate cost
O can implement functions limited by number of terms
O high speed (only one programmable plane that is much smaller than
ROM's decoder)
0 PLA - programmable AND and OR planes
O most expensive (most complex in design, need more sophisticated tools)
O can implement any function up to a product term limit
O slow (two programmable planes)

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 58

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 59

Regular logic structures for multi-level logic

O Difficult to devise a regular structure for arbitrary connections between a
large set of different types of gates
O efficiency/speed concerns for such a structure
O in 467 you'll learn about field programmable gate arrays (FPGAs) that
are just such programmable multi-level structures
O programmable multiplexers for wiring
[lookup tables for logic functions (programming fills in the table)
0 multi-purpose cells (utilization is the big issue)
0 Use multiple levels of PALs/PLAS/ROMs
O output intermediate result
O make it an input to be used in further logic

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 60

Combinational logic implementation summary

0 Multi-level logic
O conversion to NAND-NAND and NOR-NOR networks
O transition from simple gates to more complex gate building blocks
O reduced gate count, fan-ins, potentially faster
0 more levels, harder to design
0 Time response in combinational networks
[gate delays and timing waveforms
O hazards/glitches (what they are and why they happen)
O Regular logic
O multiplexers/decoders
O ROMs
O PLAs/PALs
O advantages/disadvantages of each

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation - 61

