

CSE 370 - Winter 2000 - Combinational Implementation - 1

1/19/00

Two-level logic using NAND and NOR gates

- NAND-NAND and NOR-NOR networks
 - $\label{eq:lambda} \textbf{I} \quad \text{de Morgan's law}: \quad \textbf{(A + B)'} \ = \ \ \textbf{A' \bullet B'}$
 - (A B)' = A' + B' I written differently: $A + B = (A' \cdot B')'$ $(A \bullet B) = (A' + B')'$
- In other words --
 - ${\rm I\hspace{-.07cm}I}$ OR is the same as NAND with complemented inputs ■ AND is the same as NOR with complemented inputs
 - NAND is the same as OR with complemented inputs
 - I NOR is the same as AND with complemented inputs

1/19/00

CSE 370 - Winter 2000 - Combinational Implementation

Conversion between forms

- \blacksquare Convert from networks of ANDs and ORs to networks of NANDs and NORs
 - I introduce appropriate inversions ("bubbles")
- Each introduced "bubble" must be matched by a corresponding "bubble"
 - I conservation of inversions ■ do not alter logic function
- Example: AND/OR to NAND/NAND

1/19/00 CSE 370 - Winter 2000 - Combinational Implementation

Conversion between forms (cont'd)

■ Example: verify equivalence of two forms

= [(A' + B')' + (C' + D')']= (A • B) + (C • D) =

1/19/00

Conversion between forms (cont'd)

■ Example: map AND/OR network to NOR/NOR network

Conversion between forms (cont'd)

1/19/00

CSE 370 - Winter 2000 - Combinational Impleme

Multi-level logic

- x = ADF + AEF + BDF + BEF + CDF + CEF + G
 - reduced sum-of-products form already simplified
 - 6 x 3-input AND gates + 1 x 7-input OR gate (that may not even exist!)
 - 1 25 wires (19 literals plus 6 internal wires)
- - I factored form not written as two-level S-o-P
 - 1 1 x 3-input OR gate, 2 x 2-input OR gates, 1 x 3-input AND gate
 - 1 10 wires (7 literals plus 3 internal wires)

1/19/00

I Advantages I circuits may be smaller I gates have smaller fan-in I circuits may be faster I Disadvantages I more difficult to design I tools for optimization are not as good as for two-level I analysis is more complex

CSE 370 - Winter 2000 - Combinational Implementation - 20

1/19/00

I Waveforms I visualization of values carried on signal wires over time I useful in explaining sequences of events (changes in value) I Smulation tools are used to create these waveforms I input to the simulator includes gates and their connections I input stimulus, that is, input signal waveforms Some terms I gate delay — time for change at input to cause change at output I min delay – typical/nominal delay — max delay I careful designers design for the worst case I rise time — time for output to transition from low to high voltage I fall time — time for output to transition from high to low voltage I pulse width — time that an output stays high or stays low between changes

CSE 370 - Winter 2000 - Combinational Implementation - 21

1/19/00

ROM vs. PLA ■ ROM approach advantageous when design time is short (no need to minimize output functions) ■ most input combinations are needed (e.g., code converters) I little sharing of product terms among output functions ■ ROM problems ■ size doubles for each additional input I can't exploit don't cares ■ PLA approach advantageous when I design tools are available for multi-output minimization I there are relatively few unique minterm combinations I many minterms are shared among the output functions ■ PAL problems I constrained fan-ins on OR plane

CSE 370 - Winter 2000 - Combinational Implementation - 58

Regular logic structures for two-level logic

- ROM full AND plane, general OR plane
 - I cheap (high-volume component)
 - I can implement any function of n inputs
 - medium speed
- PAL programmable AND plane, fixed OR plane
 - intermediate cost
 - I can implement functions limited by number of terms
 - high speed (only one programmable plane that is much smaller than ROM's decoder)
- PLA programmable AND and OR planes
 - I most expensive (most complex in design, need more sophisticated tools)
 - I can implement any function up to a product term limit
 - slow (two programmable planes)

1/19/00 CSE 370 - Winter 2000 - Combinational Imple

Regular logic structures for multi-level logic

- Difficult to devise a regular structure for arbitrary connections between a large set of different types of gates
 - I efficiency/speed concerns for such a structure
 - I in 467 you'll learn about field programmable gate arrays (FPGAs) that are just such programmable multi-level structures
 - I programmable multiplexers for wiring
 - I lookup tables for logic functions (programming fills in the table)
 - I multi-purpose cells (utilization is the big issue)
- Use multiple levels of PALs/PLAs/ROMs
 - I output intermediate result
 - make it an input to be used in further logic

1/19/00

1/19/00

CSE 370 - Winter 2000 - Combinational Imp

Combinational logic implementation summary

- - conversion to NAND-NAND and NOR-NOR networks
 - ${\bf I} \quad \text{transition from simple gates to more complex gate building blocks}$
 - reduced gate count, fan-ins, potentially faster
 more levels, harder to design
- Time response in combinational networks
 - I gate delays and timing waveforms
 - I hazards/glitches (what they are and why they happen)
- Regular logic
 - I multiplexers/decoders
 - ROMs
 - PLAs/PALs
 - $\hbox{\bf I} \quad \text{advantages/disadvantages of each} \\$

1/19/00

CSE 370 - Winter 2000 - Combinational Implementation - 61