Welcome to CSE370: Introduction to Digital Design

1 Course staff
1 Martin Dickey, Sorin Lerner, Wanda Hung
1 Course web
1 www.cs.washington.edu/education/courses/370/

1 This week

1 What is logic design?
What is digital hardware?
What will we be doing in this class?
Class administration, overview of course web, and logistics
Preliminaries: number representation systems
Fundamental logical operations

1/10/00 CSE 370 - Winter 2000 - Introduction - 1

Why are we here?

1 Fairly obvious reasons
1 this course is part of the CS/CompE requirements
1 itis the implementation basis for all modern computing devices
| building large things from small components

1 Less obvious reasons

provide another model of what a computer is

the inherent parallelism in hardware is often our first exposure to
parallel computation

it offers an interesting counterpoint to software design and is therefore
useful in furthering our understanding of computation, in general

1/10/00 CSE 370 - Winter 2000 - Introduction - 2

What will we learn in CSE370?

1 The language of logic design
1 Boolean algebra, logic minimization, state, timing, CAD tools
The concept of state in digital systems
1 analogous to variables and program counters in software systems
1 How to specify/simulate/compile our designs
1 hardware description languages
1 tools to simulate the workings of our designs
1 logic compilers to synthesize the hardware blocks of our designs
1 mapping onto programmable hardware (code generation)
1 Contrast with software design
1 both map well-posed problems to physical devices

1 both must be flawless... yet hardware and software failure modes are
not all the same

| Is hardware more reliable than software? If so, why?

1/10/00 CSE 370 - Winter 2000 - Introduction - 3

Applications of logic design

1 Conventional computer design
1 CPUs, busses, peripherals

1 Networking and communications
1 phones, modems, routers

1 Embedded products
1 in cars, toys, appliances, entertainment devices

Scientific equipment
1 testing, sensing, reporting

The world of computing is much much bigger than just PCs!

1/10/00 CSE 370 - Winter 2000 - Introduction - 4

A quick history lesson

1 1850: George Boole invents Boolean algebra
1 maps logical propositions to symbols
1 permits manipulation of logic statements using mathematics
1 1938: Claude Shannon links Boolean algebra to switches
1 his Masters’ thesis
1 1945: John von Neumann develops the first stored program computer
1 its switching elements are vacuum tubes (a big advance from relays)
1 1946: ENIAC . . . The world's first completely electronic computer
118,000 vacuum tubes
1 several hundred multiplications per minute
1 1947: Shockley, Brittain, and Bardeen invent the transistor
1 replaces vacuum tubes
1 enable integration of multiple devices into one package
1 gateway to modern electronics

1/10/00 CSE 370 - Winter 2000 - Introduction - 5

What is logic design?

1 What is design?

1 given a specification of a problem, come up with a way of solving it
choosing appropriately from a collection of available techniques and
components, while meeting various criteria for size, cost, power, beauty,
elegance, etc.

1 What is logic design?

1 determining the collection of digital logic components to perform a
specified control and/or data manipulation and/or communication
function and the interconnections between them
which logic components to choose? — there are many implementation
technologies (e.g., off-the-shelf fixed-function components,
programmable devices, transistors on a chip, etc.)
the design may need to be optimized and/or transformed to meet design
constraints

1/10/00 CSE 370 - Winter 2000 - Introduction - 6

What is digital hardware?

1 Collection of devices that sense and/or control wires that carry a digital
value (i.e., a physical quantity that can be interpreted as a “0” or “1”"
1 example: digital logic where voltage < 0.8v isa “0”and > 2.0visa“1”
1 example: pair of transmission wires where a “0” or “1” is distinguished
by which wire has a higher voltage (differential)
1 example: orientation of magnetization signifies a “0” or a “1”
1 Primitive digital hardware devices
1 logic computation devices (sense and drive)
| are two wires both “1” - make another be “1” (AND)
| is at least one of two wires “1” - make another be “1” (OR)
| is a wire “1” - then make another be “0” (NOT)Sense
1 memory devices (store)

| store a value drive
| recall a value previously stored

sense

1/10/00 CSE 370 - Winter 2000 - Introduction - 7 Source: Microsoft Encartal

What is happening now in digital design?

1 Big change in the way industry does hardware design over last few years
1 larger and larger designs
1 shorter and shorter time to market
1 cheaper and cheaper products
1 Scale
1 pervasive use of computer-aided design tools over hand methods
1 multiple levels of design representation
Time
emphasis on abstract design representations
programmable rather than fixed function components
automatic synthesis techniques
importance of sound design methodologies
1 Cost
1 higher levels of integration
1 use of simulation to debug designs

—

1/10/00 CSE 370 - Winter 2000 - Introduction - 8

CSE 370: concepts/skills/abilities

Understanding the basics of logic design (concepts)
Understanding sound design methodologies (concepts)
Modern specification methods (concepts)

Familiarity with a full set of CAD tools (skills)

Appreciation for the differences and similarities (abilities
in hardware and software design

New ability: fo accomplish the logic design task with the aid of computer-aided
design tools and map a problem description into an implementation with
programmable logic devices after validation via simulation and understanding
of the advantages/disadvantages as compared to a software implementation

1/10/00 CSE 370 - Winter 2000 - Introduction - 9

Notes about the course

1 3 Lectures, 1 Q. section per week

1 Attendance is expected!

1 Participation is expected!

1 Please read textbook before coming to class
1 Homework sets

1 Problems range from mechanical to thought-provoking

1 Good prep for tests

1 OK to work in pairs
1 Quizzes and final exams

1 No make-up; can drop one quiz

1 Mostly cover current material

| some comprehensive questions on Final

1/10/00 CSE 370 - Winter 2000 - Introduction - 10

Computation: abstract vs. implementation

Up to now, computation has been a mental exercise (paper, programs

This dlass is about physically implementing computation using physical
devices that use voltages to represent logical values

1 Basic units of computation are:

1 representation: "0", "1" on a wire
set of wires (e.g., for binary integers)

1 assignment: x =y
1 data operations: X+y-5
1 control:

sequential statements: A; B; C

conditionals: if x==1 then y

loops: for(i=1;i==10,i++)

procedures: A; proc(...); B;

1 We will study how each of these are implemented in hardware and
composed into computational structures

1/10/00 CSE 370 - Winter 2000 - Introduction - 11

Switches: basic element of physical
implementations

1 Implementing a simple circuit (arrow shows action if wire changes to “1"):

Ia z
close switch (if A is “1” or asserted)
M‘ and turn on light bulb (Z)
fa i
open switch (if A is “0” or unasserted)
““ and turn off light bulb (Z)
Z=A

1/10/00 CSE 370 - Winter 2000 - Introduction - 12

Switches (cont’d)

1 Compose switches into more complex ones (Boolean functions):

A iB

~ Z= AandB

AND

1/10/00 CSE 370 - Winter 2000 - Introduction - 13

Switching networks

1 Switch settings
1 determine whether or not a conducting path exists to light
the light bulb

1 To build larger computations
1 use a light bulb (output of the network) to set other switches (inputs to
another network).
1 Connect together switching networks
1 to construct larger switching networks, i.e., there is a way to connect
outputs of one network to the inputs of the next.

1/10/00 CSE 370 - Winter 2000 - Introduction - 14

Representation levels of digital designs

Physical devices (transistors, relays)
Switches
Truth tables
Boolean algebra
Gates
Waveforms
Finite state behavior
Register-transfer behavior
Concurrent abstract specifications

scope of CSE 370

1/10/00 CSE 370 - Winter 2000 - Introduction - 15

Digital vs. analog

1 Itis convenient to think of digital systems as having only discrete, digital,
input/output values
1 In reality, real electronic components exhibit continuous, analog, behavior

1 Why do we make this abstraction?
1

1 Why does it work?
1

1/10/00 CSE 370 - Winter 2000 - Introduction - 16

Mapping from physical world to binary world

Technology State 0 State 1

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL) 0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on

Dynamic RAM Discharged capacitor Charged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubble Bubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

1/10/00 CSE 370 - Winter 2000 - Introduction - 17

Combinational vs. sequential digital circuits

1 A simple model of a digital system is a unit with inputs and outputs:

— F—0»
inputs —<—*| system ——* outputs

—_— @@ O

1 Combinational means "memory-less”
1 a digital circuit is combinational if its output values
only depend on its input values

1/10/00 CSE 370 - Winter 2000 - Introduction - 18

Combinational logic symbols

1 Common_ combinational logic systems have standard symbols called
logic gates

1 Buffer, NOT
- -
1 AND, NAND
=D 1 > easy to implement

with CMOS transistors
1 OR, NOR (the switches we have

available and use most)
I> I

1/10/00 CSE 370 - Winter 2000 - Introduction - 19

Sequential logic

1 Sequential systems
1 exhibit behaviors (output values) that depend not only
on the current input values, but also on previous input values

1 In reality, all real circuits are sequential
1 because the outputs do not change instantaneously after an input change
1 why not, and why is it then sequential?
1 Afundamental abstraction of digital design is to reason (mostly) about
steady-state behaviors
1 look at the outputs only after sufficient time has elapsed for the system
to make its required changes and settle down

1/10/00 CSE 370 - Winter 2000 - Introduction - 20

Synchronous sequential digital systems

Outputs of a combinational circuit depend only on current inputs

1 after sufficient time has elapsed
Sequential circuits have memory

1 even after waiting for the transient activity to finish
The steady-state abstraction is so useful that most designers use a form of
it when constructing sequential circuits:
the memory of a system is represented as its state
changes in system state are only allowed to occur at specific times
controlled by an external periodic clock
the clock period is the time that elapses between state changes it must
be sufficiently long so that the system reaches a steady-state before
the next state change at the end of the period

1/10/00 CSE 370 - Winter 2000 - Introduction - 21

Example of combinational and sequential logic

1 Combinational:
1 inputA, B

1 wait for clock edge
1 observe C
1

1

wait for another clock edge A —>
observe C again: will stay the same —*cC
B —*
1 Sequential:
1 inputA, B T
Clock
1 wait for clock edge °e
1 observe C
1 wait for another clock edge
1 observe C again: may be different
1/10/00 CSE 370 - Winter 2000 - Introduction - 22

Abstractions

1 Some we've seen already

1 digital interpretation of analog values

1 transistors as switches

1 switches as logic gates

1 use of a clock to realize a synchronous sequential circuit
1 Some others we will see
truth tables and Boolean algebra to represent combinational logic
encoding of signals with more than two logical values into binary form
state diagrams to represent sequential logic
hardware description languages to represent digital logic
waveforms to represent temporal behavior

1/10/00 CSE 370 - Winter 2000 - Introduction - 23

An example

1 Calendar subsystem: number of days in a month (to control watch display)
1 used in controlling the display of a wrist-watch LCD screen

1 inputs: month, leap year flag
1 outputs: number of days

1/10/00 CSE 370 - Winter 2000 - Introduction - 24

Implementation in software

integer number of days (month, leap year flag) {
switch (month) {

case 1l: return (31);

case 2: if (leap year flag == 1) then return (29)
else return (28);

case 3: return (31);

case 12: return (31);

default: return (0);

1/10/00 CSE 370 - Winter 2000 - Introduction - 25

Implementation as a
combinational digital system

1 Encoding:)) month leap
1 how many bits for each input/output?
1 binary number for month
1 four wires for 28, 29, 30, and 31
1 Behavior:
1 combinational
1 truth table i i l l
specification month leap | 28 29 30 3 28 29 30 31
0001 - 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
o011 - 0 0 0 1
0100 - 0 0 1 0
o0 - [0 0 o0 1
1101 - - - - -
11- - - - -
0000 - - - - -
1/10/00 CSE 370 - Winter 2000 - Introduction - 26

Combinational example (cont’d)

1 Truth-table to logic to switches to gates S g:%orl Sf\[’Jrrngr?é bol
I 28 = 1 when month=0010 and leap=0 o and Mmoo

or not
1 28 = ml'sm2'sm3em4'sleap'
31 = 1 when month=0001 or month=0011 or y.. monthE1100

31 = (m1'em2'sm3'em4) + (m1'em2'em3em4) + ... (Mlem2em3'sm4’)
31 = can we simplify more?

Another example

1 Door combination lock:
punch in 3 values in sequence and the door opens; if there is an error
the lock must be reset; once the door opens the lock must be reset

inputs: sequence of input values, reset
outputs: door open/close
memory: must remember combination
or always have it available as an input

1/10/00 CSE 370 - Winter 2000 - Introduction - 28

month leap | 28 29 30 3
001 - [0 0 0 1
0010 0 1 0 0 0
0010 1 01 0 0
0011 - [0 0 0 1
0100 - [0 0 1 0
o - [0 0 o0 1
1101 - - - - -
111- - - -
000 - |- - - -
1/10/00 CSE 370 - Winter 2000 - Introduction - 27
Implementation in software
integer combination lock () {
integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;
while (lnew_value());
vl = read_value();
if (vl != c[1l]) then error = 1;
while (lnew_value());
v2 = read_value();
if (v2 != c[2]) then error = 1;
while (lnew_value());
v3 = read value();
if (v2 != c[3]) then error = 1;
if (error == 1) then return(0); else return (1);

1/10/00 CSE 370 - Winter 2000 - Introduction - 29

Implementation as a sequential digital system

1 Encoding:
1 how many bits per input value?
1 how many values in sequence?
1 how do we know a new input value is entered?
1 how do we represent the states of the system?
1 Behavior:
clock wire tells us when it’s ok to look at inputs
(i.e., they have settled after change)
sequential: sequence of values must be entered ”ewl value - reset

sequential: remember if an error occurred
finite-state specification

clock —»

open/closed

1/10/00 CSE 370 - Winter 2000 - Introduction - 30

Sequential example (cont’d):
abstract control

1 Finite-state diagram
1 states: 5 states
| represent point in execution of machine
| each state has outputs
1 transitions: 6 from state to state, 5 self transitions, 1 global

| changes of state occur when clock says it’s ok l

| based on value of inputs ERR
1 inputs: reset, new, results of comparisons @
1 output: open/closed

C31=value
& new

1 /\§2 S:
reset —»{ closed ed d open

close closex
Ci=value C2=value C3=value
& new & new & new

not new not new not new

Cil=value
&ne

1/10/00 CSE 370 - Winter 2000 - Introduction - 31

Sequential example (cont’d):
data-path vs. control

1 Internal structure
1 data-path
| storage for combination
| comparators
1 control
I finite-state machine controller
| control for data-path
| state changes controlled by clock
new equal reset

mux
multiplexer control controller
e
clock

equal open/closed

value

1/10/00 CSE 370 - Winter 2000 - Introduction - 32

Sequential example (cont’d):
finite-state machine

1 Finite-state machine ERR
1 refine state diagram to include internal structure @

not equal
s
closed
ux=C:

not new not new not new

reset —f

1 generate state table (much like a truth-table)

next
reset new equal state | state mux open/closed

1 - St C1 closed

0 0 - St S1 C1 closed

0 1 Q St ERR - closed

4 1 1 St s2 2 closed

0 1 1 S3 OPEN - open
1/10/00 CSE 370 - Winter 2000 - Introduction - 33

Sequential example (cont’d):
encoding

1 Encode state table

1 state can be: S1, S2, S3, OPEN, or ERR
| needs at least 3 bits to encode: 000, 001, 010, 011, 100
I and as many as 5: 00001, 00010, 00100, 01000, 10000
| choose 4 bits: 0001, 0010, 0100, 1000, 0000

1 output mux can be: C1, C2, or C3
| needs 2 to 3 bits to encode
| choose 3 bits: 001, 010, 100

1 output open/closed can be: open or closed
| needs 1 or 2 bits to encode
| choose 1 bits: 1, 0

next good choice of encoding!
reset new equal state |state mux open/closed

Sequential example (cont’d):
controller implementation

1 Implementation of the controller

special circuit element,
called a register, for
remembering inputs
mux when told to by clock
control controller

new equal reset

«—clock

new equal reset
open/closed ‘ ‘ ‘

mux

v
comb. Togic
control

+——clock

open/closed

1/10/00 CSE 370 - Winter 2000 - Introduction - 35

1 - 0001 001 O s identical t
0 0 - 0001 |0001 001 O Fq:tx'a’lsbl'ten f'CE: t"
0 1 0 0001 |0000 - 0 a Its o state
0 1 1 0001 {0010 010 O open/closed s
_ identical to first bit
0 1 1 0100 | 1000 1 of e
1/10/00 CSE 370 - Winter 2000 - Introduction - 34
Design hierarchy
system
data-path control
code : sta'te/\\)
registers Multiplexer comparator registers comtIJgéaiElonal
register logic
switching
networks
1/10/00 CSE 370 - Winter 2000 - Introduction - 36

Summary

1 That was what the entire course is about

converting solutions to problems into combinational and sequential
networks effectively organizing the design hierarchically

doing so with a modern set of design tools that lets us handle large
designs effectively

taking advantage of optimization opportunities

1 Now lets do it again
1 this time we'll take nine weeks

1/10/00 CSE 370 - Winter 2000 - Introduction - 37

The basics— electronics

1 Resistor
1 Ohm’s law— V=IR J\/\/\/_
| V=voltage, I=current, R=resistance

1 Capacitor
1 1=C(dV/dt)

| C=capacitance
1 No DC current path
1 Voltage cannot change instantaneously

1 MOS Transistors
1 Used as switches

1 Pass binary voltages
-

1/10/00 CSE 370 - Winter 2000 - Introduction - 38

The basics— binary numbers

1 Base conversion (binary, octal, decimal, hexadecimal
1 Positional number system
I 101,=5,
I 1014=65,,
| 101,4=257;,
1 Conversion between binary/octal/hex
| Binary: 10011110001
| Octal: 10011110 | 001=23614
| Hex: 100 | 1111 | 0001=4F1,
1 Addition and subtraction are trivial, but worth practicing
1 See Katz, appendix A

1/10/00 CSE 370 - Winter 2000 - Introduction - 39

The basics— base conversion

1 Conversion from decimal to binary/octal/hex

Binary Octal
Quotient Remainder Quotient Remainder
56+8= 7 0

+ 0 7

561=111000,
5610=70s

1 Why does this work?

I N=56,,=111000,

1 Q=N/2=56/2=111000/2=11100 remainder 0
1 Each successive divide liberates an LSB

1/10/00 CSE 370 - Winter 2000 - Introduction - 40

Number systems

1 How do we write negative binary numbers?
1 Historically: Three approaches
1 Sign and magnitude
1 Ones complement
1 Twos complement
1 Twos complement makes addition and subtraction easy
1 Used almost universally in present-day systems

1/10/00 CSE 370 - Winter 2000 - Introduction - 41

Approach 1: Sign and magnitude

1 The most-significant bit (msb) is the sign digit
1 0= positive
1 1= negative
1 The remaining bits are the number’s magnitude
1 Problem 1: Two representations for zero
1 0= 0000 and also—0 = 1000

1 Problem 2: Arithmetic is cumbersome

Add Subtract Compare and subtract

4 0100 4 0100 0100 -4 1100 1100
+3 +0011 -3 +1011 - 0011 +3 +0011 - 0011

=7 =0111 =1 #1111 = 0001 -1 #1111 = 1001

1/10/00 CSE 370 - Winter 2000 - Introduction - 42

Approach 2: Ones complement Approach 3: Twos complement

1 Negative number: Bitwise complement of positive number 1 Negative number: Bitwise complement plus one
1 0011=3, 1 0011=3,
1 1100=-3,, 1 1101=-3,
1 Solves the arithmetic problem 1 Number wheel
Add Invert, add, add carry Invert and add
1 Only one zero!

4 0100 4 0100 -4 1011 - IR
+3 40011 -3 + 1100 +3 40011 1 msb is the sign digit
= = = — 1 0= positive

1 Rel ain7|n rt%%m: T ! ‘en%a?iooos for ero1 1110 1 1= sagative
1 t) = 0000 anda/sa—% = ﬁ?i = 0001

1/10/00 CSE 370 - Winter 2000 - Introduction - 43 1/10/00 CSE 370 - Winter 2000 - Introduction - 44
Twos complement (con’t) Overflow
1 Complementing a complement restores the original number 1

1 Summing two positive numbers gives a negative result

1 Arithmetic is easy
1 Summing two negative numbers gives a positive result

1 We ignore the carry

| Same as a full rotation around the wheel
1 Subtraction = negation and addition

| Easy to implement in hardware

Add Invert and add Invert and add
4 0100 4 0100 -4 1100
+3 +0011 -3 + 1101 +3 + 0011
=7 =0111 =1 1 0001 -1 1111
drop carry = 0001
6+4=-6 —7-3=+6
1/10/00 CSE 370 - Winter 2000 - Introduction - 45 1/10/00 CSE 370 - Winter 2000 - Introduction - 46
Next subject: Combinational logic Logic functions and truth tables

1 Logic functions and truth tables

X Y |z
I AND, OR, Buffer, NAND, NOR, NOT, XOR, XNOR 1AW XeY¥ Xy 5 :D— z o 1o
1 Gate logic i g g
1 Networks of Boolean functions
) 1 OR X+Y X Y |z
1 Axioms and theorems of Boolean algebra X 0 0 o
1 Canonical forms Y DZ (13 é 1
1 Sum of products and product of sums 1 Buffer X 111
1 Simplification
X Y
1 Boolean cubes and Karnaugh maps 1 NOT X X —[>— Y oo
1 Two-level simplification it
— X Y
X X —| >o— Y 0 1
110

1/10/00 CSE 370 - Winter 2000 - Introduction - 47 1/10/00 CSE 370 - Winter 2000 - Introduction - 48

Logic functions and truth tables (con’t)

X v |z
X 0 0 |1
1 NAND -
XeY XY v :D" z 0 1|1
10 |1
11 |o
1 NOR X_ Y |z
— X 0 0 |1
X+Y D— z 0o 1 |0
Y 1 0 |0
11 |o
1 XOR
X Y |z
X 0 0 |0
XeyY v z o 1 |1
10 |1
1 XNOR 11 |o
X Y |z
X 0 0 |1
X®Y X jD_ z o 1 |o
1 0 |0
101 |1
1/10/00 CSE 370 - Winter 2000 - Introduction - 49

Some notation

1 Priorities: K.B+C:((K)OB)+C

1 Variables are called literals

1 Definitions

1 Schematic. a drawing of interconnected gates
Net: wires at the same voltage (electrically connected)
Netlist: a listing of all the 1/O (gate and page) in a schematic
Fan-ir: the # of inputs to a gate
Fan-out. the # of loads the gate drives

1/10/00 CSE 370 - Winter 2000 - Introduction - 50

Minimal set

1 We can implement all logic functions from NOT, NOR, and NAND
1 Example: (X and Y) = not (X nandY)

1 In fact, we can do it with only NOR or only NAND
1 NOT is just NAND or NOR with both inputs tied together

X__ Y |Xnory X Y |XnandY
0 0 1 0 o0 1
101 0 101 0

1 NAND and NOR are duals: We can implement one from the other
I X'nand Y = not ((not X) nor (not Y))
I X norY = not ((not X) nand (not Y))

1/10/00 CSE 370 - Winter 2000 - Introduction - 51

