Combinational logic topics

1 Logic functions, truth tables, and switches
1 NOT, AND, OR, NAND, NOR, XOR, . . .
1 minimal set
1 Axioms and theorems of Boolean algebra
1 proofs by re-writing
1 proofs by perfect induction
1 Gate logic
1 networks of Boolean functions
1 time behavior
1 Canonical forms
1 two-level
1 incompletely specified functions
1 Simplification
1 Boolean cubes and Karnaugh maps
1 two-level simplification

CSE 370 - Winter 00 - Combinational Logic - 1

Possible logic functions of two variables

1 There are 16 possible functions of 2 input variables:
1 in general, there are 2**(2**n) functions of n inputs

X‘V
Y — F

O

CSE 370 - Winter 00 - Combinational Logic - 2.

Cost of different logic functions

1 Different functions are easier or harder to implement

each has a cost associated with the number of switches needed

0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
X (F3) and Y (F5): require 0 switches, output is one of inputs

X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
XnorY (F4) and X nand Y (F14): require 4 switches

XorY (F7) and X and Y (F1): require 6 switches

X =Y (F9)and X ® Y (F6): require 16 switches

thus, because NOT, NOR, and NAND are the cheapest they are the
functions we implement the most in practice

Minimal set of functions

1 Can we implement all logic functions from NOT, NOR, and NAND?
1 For example, implementing XandY
is the same as implementing not (X nand Y)
1 Infact, we can do it with only NOR or only NAND
1 NOT is just a NAND or a NOR with both inputs tied together

X Y [XnorY X Y [XnandY
0 0 1 0 0 1
1 1 0 1 1 0

1 and NAND and NOR are "duals",
that is, its easy to implement one using the other

XnandY = not((notX) nor (notY))
Xnor Y not ((not X) nand (not Y))

1 But let’s not move too fast. . .
1 let’s look at the mathematical foundation of logic

CSE 370 - Winter 00 - Combinational Logic - 4

CSE 370 - Winter 00 - Combinational Logic - 3

An algebraic structure

1 An algebraic structure consists of

a set of elements B

binary operations { + , }

and a unary operation { ' }

such that the following axioms hold:

1. the set B contains at least two elements, a, b, such that a © b

2. closure: a+b isinB asb isinB

3. commutativity: a+b=b+a asb=bea

4. associativity: a+(b+c)=(a+b)+c as(bec)=(aeb)ec

5. identity: a+0=a asl=a

6. distributivity: a+(bec)=(a+b)e(a+c) as(b+c)=(asb)+(asc)
7. complementarity: a +a' =1 aea =0

CSE 370 - Winter 00 - Combinational Logic - 5

Boolean algebra

1 Boolean algebra
1 B={0,1}
1+ is logical OR, « is logical AND
1 ‘'is logical NOT

1 All algebraic axioms hold

CSE 370 - Winter 00 - Combinational Logic - 6

Logic functions and Boolean algebra

1 Any logic function that can be expressed as a truth table can be written as
an expression in Boolean algebra using the operators: ', +, and ¢

X Y [XeY X Y [X [XeY

o o o o o 1 o

o 1 o o 1 1 1

1 0 |0 1 o |0 |0

1 1 1 1 1 o o

X Y |[X |Y [XeY [XeY[(XeY)+(X oY)

o o 1 1 [1 1

o 1 |1 |o |o)) -

1 0 0 1 0 0 0 (XeY)+(X'eoY') = X=Y

1 1|0 o 1 o 1
Boolean expression that is
true when the variables X
and Y have the same value

X, Y are Boolean algebra variables and false, otherwise

CSE 370 - Winter 00 - Combinational Logic - 7.

Axioms and theorems of Boolean algebra

1 identity

1. X+0=X 1ID. Xel1=X
1 null

2. X+1=1 2D. Xs0=0
1 idempotency:

3. X+X=X 3D. XeX=X
1 involution:

4, (X)y =X
1 complementarity:

5 X+X=1 5D. XeX'=0
1 commutativity:

6. X+Y=Y+X 6D. XeY=YeX

1 associativity:
7. X+Y)+Z=X+(Y+2) 7D, (XeY)eZ=Xe(Ys2)

CSE 370 - Winter 00 - Combinational Logic - 8

Axioms and theorems of Boolean algebra (cont’d)

1 distributivity:
8 Xe(Y+Z)=(XoY)+ (XoZ) 8D. X+(Ye2Z)=(X+Y)e(X+2)

1 uniting:

9. XeY+XeY =X 9D. (X+Y)e(X+Y)=X
1 absorption:

10. X+ Xe Y =X 10D. Xo (X+Y) =X

1L (X+Y)eY=XeY 11D, (X Y) +Y =X +Y
1 factoring:

12.X+Y)e (X +2) = 16D. X oY + X' 0 Z =

XeZ+X oY X+2Z) e (X +Y)

1 concensus:
BAXeY)+(Ye2)+ (Xo2Z)= 17D.(X+Y)e(Y +2)o (X +2)=
XeY+XeZ X+Y)e (X +2)

CSE 370 - Winter 00 - Combinational Logic - 9

Axioms and theorems of Boolean algebra (cont’)

1 de Morgan's:
4. (X+Y+.)=XeYo.. 12D.(XeYe.) =X +Y +..

1 generalized de Morgan's:
15. F(X1,X2,...Xn,0,1,+,#) = f(X1',X2",... X', 1,0,0,+)

1 establishes relationship between ¢ and +

CSE 370 - Winter 00 - Combinational Logic - 10

Axioms and theorems of Boolean algebra (cont’)

1 Duality
1 adual of a Boolean expression is derived by replacing
eby+, + bye, 0by 1, and 1 by 0, and leaving variables unchanged
1 any theorem that can be proven is thus also proven for its dual!
1 a meta-theorem (a theorem about theorems)
1 duality:
16.X+Y+ ..o XeYe .,
1 generalized duality:
17. F (X1,X2

X0,0,1,4,%) & f(X1,X2,....Xn,1,0,0,+)

3

1 Different than deMorgan’s Law
1 this is a statement about theorems
1 this is not a way to manipulate (re-write) expressions

CSE 370 - Winter 00 - Combinational Logic - 11

Proving theorems (rewriting)

1 Using the axioms of Boolean algebra:

1 e.g., prove the theorem: XeY+XeY = X
distributivity (8) XeY+XeY = Xe(Y+Y)
complementarity (5) Xe(Y+Y) = Xe(1)
identity (1D) X e (1) = X

1 e.g., prove the theorem: X+XeY = X
identity (1D) X + XeoY = Xel + XeY
distributivity (8) Xel + XeY = Xso(1+Y)
identity (2) Xe(1+Y) = Xe(1)
identity (1D) X e (1) = Xm

CSE 370 - Winter 00 - Combinational Logic - 12

Proving theorems (perfect induction)

1 Using perfect induction (complete truth table):
1 e.g., de Morgan's:

') X Y X Y [(X+Y) XeY
X+Y)=XeY 0 0 1 1 1 1
NOR is equivalent to AND 0 1 1 0 0 0
S 1 0 0 1 0 0
with inputs complemented i1 0 0 0 0

, X Y X Y [(XeY) X+Y
(XeY)y=X+Y 0 0 1 1 T 1
NAND is equivalent to OR ? (1) (1) ? ! }
with inputs complemented 1 1 0 0 0 0

CSE 370 - Winter 00 - Combinational Logic - 13

A simple example

1 1-bit binary adder

1 inputs: A, B, Carry-in A—> s
1 outputs: Sum, Carry-out .B — > Cout
Cin —

S=A'B'Cin+ A'BCin' + AB'Cin' + AB Cin
Cout=A'BCin+AB'Cin+ ABCin'+ ABCin

CSE 370 - Winter 00 - Combinational Logic - 14

Apply the theorems to simplify expressions

1 The theorems of Boolean algebra can simplify Boolean expressions
1 e.g., full adder's carry-out function (same rules apply to any function)

A'BCin + A B Cin + ABCin' + ABCin
A'BCin + AB'Cin + ABCin' + ABCin + ABCin
A'BCin + ABCin + AB'Cin + ABCin' + ABCin
(A'+A)BCin + AB'Cin + ABCin' + ABCin
(1)BCin + AB'Cin + ABCin' + ABCin

BCin + AB'Cin +ABCin' + ABCin + ABCin

Cout

= BCin + AB'Cin + ABCin + ABCin' + ABCin
= BCin + A(B'+B)Cin + ABCin' + ABCin
= BCin + A(1)Cin + ABCin' + ABCin
= BCin + ACin + AB(Cin' + Cin)
BCin + ACin + AB(1)
+

B Cin ACin + AB

From Boolean expressions to logic gates

1 NOT X X ~X

=1
orl<

I AND XeY XY XAY

<<
x
=<
N
== o ol
o o<

HHHqN HooqN

< <
KI I]
N
ool
o ol<

CSE 370 - Winter 00 - Combinational Logic - 16

CSE 370 - Winter 00 - Combinational Logic - 15

From Boolean expressions to logic gates (cont’d)

X_ Y |z
X 0 0 |1
1 NAND X :D_ 2 ¢ ot
1 0 |1
1 1]0
X Y |Z
1 NOR X T
:):>— z 0 1|0
Y 1 0|0
1 1|0
1 XOR Y iz I
Xey X 7 00 [0 XX0rY =XY +X Y
Y 0 111 X or Y but not both
} (1) 6 ("inequality", "difference”)
1 XNOR
= X Y |Z
x=y X 0 0 |1 XxnorY=XY+XY
Y jD_ z 0 110 X and Y are the same
i ? ? ("equality”, "coincidence")

CSE 370 - Winter 00 - Combinational Logic - 17

From Boolean expressions to logic gates (cont’d)

1 More than one way to map expressions to gates
I eg., Z=AeBe(C+D)=(As (B +(C+D))
T2
T1
use of 3-input gate

A—> z A /

Cc—.
D—

CSE 370 - Winter 00 - Combinational Logic - 18

Waveform view of logic functions

B Just a sideways truth table
1 but note how edges don't line up exactly
1 it takes time for a gate to switch its output!

time

) 100) 200
X -
¥ I s
Not % A 1
R&Y —
Mot (% &) y
Ry I]
Hot (% +) L 1
R xor ¥ r S |
Mot (% xor) ! —_—

ichange in Y takes time to "propagate" through gates

CSE 370 - Winter 00 - Combinational Logic - 19

Choosing different realizations of a function

;

Ic
-
] -leyel realization

- dgn’t count NOT gates)

ul -2
-level realization
| (pateg \with fewer inputs)
f3

Dj .Q XOR|gate (easier to draw
I_, 2z but cpstlier to build)

CSE 370 - Winter 00 - Combinational Logic - 20

RE
]

A
0
0
0
0
1
1
1
1

Which realization is best?

1 Reduce number of inputs
1 literal: input variable (complemented or not)
| can approximate cost of logic gate as 2 transitors per literal
| why not count inverters?
1 fewer literals means less transistors
I smaller circuits
1 fewer inputs implies faster gates
| gates are smaller and thus also faster
1 fan-ins (# of gate inputs) are limited in some technologies
1 Reduce number of gates
1 fewer gates (and the packages they come in) means smaller circuits
| directly influences manufacturing costs

CSE 370 - Winter 00 - Combinational Logic - 21

Which is the best realization? (cont’d)

1 Reduce number of levels of gates
1 fewer level of gates implies reduced signal propagation delays
1 minimum delay configuration typically requires more gates
| wider, less deep circuits
1 How do we explore tradeoffs between increased circuit delay and size?
1 automated tools to generate different solutions
1 logic minimization: reduce number of gates and complexity
1 logic optimization: reduction while trading off against delay

CSE 370 - Winter 00 - Combinational Logic - 22

Are all realizations equivalent?

1 Under the same input stimuli, the three alternative implementations have
almost the same waveform behavior
1 delays are different
1 glitches (hazards) may arise
1 variations due to differences in number of gate levels and structure

1 The three implementations are functionally equivalent

CSE 370 - Winter 00 - Combinational Logic - 23

Implementing Boolean functions

1 Technology independent
1 canonical forms
1 two-level forms
1 multi-level forms

1 Technology choices

packages of a few gates
regular logic

two-level programmable logic
multi-level programmable logic

CSE 370 - Winter 00 - Combinational Logic - 24

Canonical forms

1 Truth table is the unique signature of a Boolean function
1 Many alternative gate realizations may have the same truth table
1 Canonical forms

1 standard forms for a Boolean expression

1 provides a unique algebraic signature

CSE 370 - Winter 00 - Combinational Logic - 25

Sum-of-products canonical form (cont’d)

1 Product term (or minterm)
1 ANDed product of literals — input combination for which output is true
1 each variable appears exactly once, in true or inverted form (but not both)

A B C | minterms . "
0 0 0 |ABC mo F in canonical form:
0 o 1 |aBC mi F(A B,C) =Im(1,356,7)
0 1 o0 |aBC m2 = m.1.+ m3l+ m5 +Im6 + m7l
0 1 1 |ABC m3 = ABC+ ABC + ABC + ABC' + ABC
1 0 0 |ABC m4) .
1 0 1 |ABC ms canonical form » minimal form
11 0 |ABC m6 F(A,B,C) =ABC+ ABC + ABC + ABC + ABC'
11 1 |ABC m7 = (AB'+ A'B + AB' + AB)C + ABC'
= ((A' + A)(B' + B))C + ABC'
=C+ ABC'
=ABC'+C
short-hand notation for =AB+C

minterms of 3 variables

CSE 370 - Winter 00 - Combinational Logic - 27

Sum-of-products canonical forms

1 Also known as disjunctive normal form
1 Also known as minterm expansion

F= 001 011 101 110 111
F = ABC + ABC + AB'C + ABC' + ABC

R OoOCOo>

C
0
1
0
1
0
1
0
1

F'= AB'C' + A'BC' + AB'C'

CSE 370 - Winter 00 - Combinational Logic - 26

Product-of-sums canonical form

1 Also known as conjunctive normal form
1 Also known as maxterm expansion

F= 000 010 100
F=(A+B+C) (A+B'+C) (A" +B+C)

e OoOo o>
= OrROROoRoN

F=(A+B+C)(A+B +C)(A'+B+C) (A +B +C)(A'+B +C)

CSE 370 - Winter 00 - Combinational Logic - 28

Product-of-sums canonical form (cont’d)

1 Sum term (or maxterm)
1 ORed sum of literals — input combination for which output is false
1 each variable appears exactly once, in true or inverted form (but not both)

A_ B C | maxterms F in canonical form:

0 0 0 |A+B+C Mo F(A, B,C) =TIM(0,2,4)

0 0 1 |A+B+C M1 = MO« M2e M4

0 1 0 |A+B+C M2 =(A+B+C)(A+B +C)(A'+B+C)
0 1 1 | A+B'+C' M3

1 0 0 [A+B+C M4 canonical form » minimal form

1 0 1 |A+B+C' M5 F(A,B,C) =(A+B+C)(A+B +C)(A'+B+C)
1 1 0 |A+B+C M6 =(A+B+C)(A+B +C)

1 1 1 |A+B+C M7 (A+B+C) (A +B+C)

=(A+C)(B+C)

short-hand notation for
maxterms of 3 variables

CSE 370 - Winter 00 - Combinational Logic - 29

S-0-P, P-0-S, and de Morgan’s theorem

1 Sum-of-products
1 F=ABC + ABC' + AB'C'
1 Apply de Morgan's
1 (F) =(ABC + ABC' + ABCY)'
1 F=(A+B+C)(A+B +C)(A+B+()

1 Product-of-sums
I F=(A+B+C)(A+B +C)(A+B+C)(A"+B +C) (A" +B +C)

1 Apply de Morgan's
1 (F)Y=((A+B+C)A+B +C)A +B+C)A +B +C)A+B +C))
I F=ABC+ABC+ AB'C + ABC' + ABC

CSE 370 - Winter 00 - Combinational Logic - 30

Four alternative two-level implementations
of F=AB +C

canonical sum-of-products

C

A‘T&:ﬁ F;}
s L
>

[:}‘i:>¢z“//

/canonical product-of-sums
F3

5
)
-
L
)
)

CSE 370 - Winter 00 - Combinational Logic - 31

1
[minimized sum-of-products

inimized product-of-sums
)
%D F4 /“

Mapping between canonical forms

1 Minterm to maxterm conversion
1 use maxterms whose indices do not appear in minterm expansion
1 eg., F(AB.C) =32m(1,3,56,7) = 1IM(0,2,4)
1 Maxterm to minterm conversion
1 use minterms whose indices do not appear in maxterm expansion
1 eg. F(ABC) = IM(0,2,4) = =m(1,3,5,6,7)
1 Minterm expansion of F to minterm expansion of F'
1 use minterms whose indices do not appear
1 eg., F(ABC) = m(1,3,5,6,7) F'(A,B,C) = Zm(0,2,4)
1 Maxterm expansion of F to maxterm expansion of F'
1 use maxterms whose indices do not appear
1 e.q., F(AB,C) = [IM(0,2,4) F'(A,B,C) = IM(1,3,5,6,7)

CSE 370 - Winter 00 - Combinational Logic - 33

Waveforms for the four alternatives

1 Waveforms are essentially identical
1 except for timing hazards (glitches)

or number of inputs to gate)

delays almost identical (modeled as a delay per level, not type of gate

N 100 T T 200
A -
B _— e =
C I 1 I I 1 I -
F1 T T 1
F2 1
F3 n 1 1
Fa 1

CSE 370 - Winter 00 - Combinational Logic - 32

Incompletely specified functions

1 Example: binary coded decimal increment by 1

1 BCD digits encode the decimal digits 0 — 9 in the bit patterns 0000 — 1001

N

off-set of W

Y
0
1
1
g on-set of W
1

e e 0|0 ofx

don't care (DC) set of W

these inputs patterns should
never be encountered in practice
— "don’t care” about associated
output values, can be exploited
in minimization

L L L Y- PP PPCRCCycy Y
HHRHOOOOR KR OO O Oom
HROORHOORROOR OO
HrorOROROROROROROD
A = X X=Y=Y=Y=Y=X=]

0
0
0
X
X
X
X
X

XXX
XXX XXX

CSE 370 - Winter 00 - Combinational Logic - 34

Notation for incompletely specified functions

1 Don't cares and canonical forms
1 so far, only represented on-set
1 also represent don't-care-set
1 need two of the three sets (on-set, off-set, dc-set)

1 Canonical representations of the BCD increment by 1 function:

I Z=m0+ m2+m4+m6+m8+di0+dll +di2 +di3 + di4 + di15

| Z=3x[m(0,2,4,6,8)+ d(10,11,12,13,14,15)]

I Z=MleM3eM5eM70M9eDI0 e Dile D12 e D13 s D14 s D15
| Z=11[M(1,3,5,7,9) e D(10,11,12,13,14,15)]

CSE 370 - Winter 00 - Combinational Logic - 35

Simplification of two-level combinational logic

1 Finding a minimal sum of products or product of sums realization

1 exploit don't care information in the process
1 Algebraic simplification

1 not an algorithmic/systematic procedure

1 how do you know when the minimum realization has been found?
1 Computer-aided design tools

1 precise solutions require very long computation times, especially for
functions with many inputs (> 10)

1 heuristic methods employed — "educated guesses” to reduce amount of

computation and yield good if not best solutions
1 Hand methods still relevant
1 to understand automatic tools and their strengths and weaknesses
1 ability to check results (on small examples)

CSE 370 - Winter 00 - Combinational Logic - 36

The uniting theorem

1 Key tool to simplification: A (B' + B) = A
1 Essence of simplification of two-level logic

1 find two element subsets of the ON-set where only one variable changes
its value — this single varying variable can be eliminated and a single
product term used to represent both elements

F = AB'+AB = (A+A)B = B

B has the same value in both on-set rows
— B remains

A has a different value in the two rows
- A'is eliminated

CSE 370 - Winter 00 - Combinational Logic - 37

Mapping truth tables onto Boolean cubes

1 Uniting theorem combines two "faces" of a cube into a larger "face™

F two faces of size 0 (nodes)
1 combine into a face of size 1(line)
01
ij
00 1
A

1 Example:

AN

A varies within face, B does not
this face represents the literal B'

ON-set = solid nodes
OFF-set = empty nodes
DC-set = x'd nodes

CSE 370 - Winter 00 - Combinational Logic - 39

Boolean cubes

1 Visual technique for indentifying when the uniting theorem can be applied
1 ninput variables = n-dimensional "cube”

01 11

1-cube O——0

111

3-cube Y 101

0009y

CSE 370 - Winter 00 - Combinational Logic - 38

Three variable example

1 Binary full-adder carry-out logic (A'+A)BCin
AB(Cin'+Cin)
A B
0 0
00 15
o 1 .
10 00091 A(B+B')Cin
10
} } the on-set is completely covered by

the combination (OR) of the subcubes
of lower dimensionality - note that 111"
is covered three times

Cout = BCin+AB+ACin

CSE 370 - Winter 00 - Combinational Logic - 40

Higher dimensional cubes

1 Sub-cubes of higher dimension than 2

F(A,B,C) = Em(4,5,6,7)

on-set forms a square
i.e., a cube of dimension 2

represents an expression in one variable
ie., 3 dimensions — 2 dimensions

A is asserted (true) and unchanged
B and C vary

This subcube represents the
literal'A

CSE 370 - Winter 00 - Combinational Logic - 41

m-dimensional cubes in a n-dimensional
Boolean space

1 In a 3-cube (three variables):
1 a0-cube, i.e., a single node, yields a term in 3 literals
a 1-cube, i.e., a line of two nodes, yields a term in 2 literals
a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal
a 3-cube, i.e., a cube of eight nodes, yields a constant term "1"
1 Ingeneral,
1 an m-subcube within an n-cube (m < n) yields a term with n — m literals

CSE 370 - Winter 00 - Combinational Logic - 42

Karnaugh maps

1 Flat map of Boolean cube
1 wrap—around at edges
1 hard to draw and visualize for more than 4 dimensions
1 virtually impossible for more than 6 dimensions
1 Alternative to truth-tables to help visualize adjacencies
1 guide to applying the uniting theorem
1 on-set elements with only one variable changing value are adjacent
unlike the situation in a linear truth-table

CSE 370 - Winter 00 - Combinational Logic - 43

Karnaugh maps (cont’d)

1 Numbering scheme based on Gray—code
1 eg., 00,01, 11, 10
1 only a single bit changes in code for adjacent map cells

0
0 |2 4
c|1
113 5
A
0 |2 4
C
13 5

13 = 1101= ABCD

CSE 370 - Winter 00 - Combinational Logic - 44

Adjacencies in Karnaugh maps

1 Wrap from first to last column
1 Wrap top row to bottom row

N A

ls}a»om 110{ 100

A\
C| oo1| o11| 111] 101

CSE 370 - Winter 00 - Combinational Logic - 45

Karnaugh map examples

1 F=
T [[ad

1 Cout=

1 f(ABC) = 3m(0,4,6,7)

[]

[
I

Blo|o

AB+ ACin + BCin

Cin| o (@)

AC + BC' ><

obtain the
complement
of the function
by covering 0s
with subcubes

CSE 370 - Winter 00 - Combinational Logic - 46

More Karnaugh map examples

G(ABC)= A

an g
L=

D F(A,B,C) = Zm(0,4,5,7) = AC + B'C’

S/Eg

F’ simply replace 1's with 0's and vice versa
F'(A,B,C) =X m(1,2,3,6) =BC'+AC

CSE 370 - Winter 00 - Combinational Logic - 47

Karnaugh map: 4-variable example

1 F(ABCD)=x2m(0,2,3,5,6,78,10,11,14,15)

F= C+ABD +BD

i

an
o

B

1111

Y

0000®

find the smallest number of the largest possible
subcubes to cover the ON-set
(fewer terms with fewer inputs per term)

CSE 370 - Winter 00 - Combinational Logic - 48

Karnaugh maps: don’t cares

1 f(AB,CD)=3x2m(1,3,579) + d(6,12,13)
1 without don't cares
| f= AD +BCD

HoRE
anne

0 X |0 0

CSE 370 - Winter 00 - Combinational Logic - 49

Design example: two-bit comparator

A B C D |[LT EQ GT
00000 1 0
A
1 1
N1 é LT—>AB<CD 11 1 0 0
| - 01000 0 1
—c T aB=CD 01]0 1 0
N2___ /5 GI—>AB>CD 1 0(1 0 O
11 1 0 0
1 000 ([0 0 1
01]0 0 1
10 (0 1 0
R RALRE
i 11 1
blockailggram 01l0 o 1
10 (0 0 1
truth table 1110 1 o0

we'll need a 4-variable Karnaugh map
for each of the 3 output functions

CSE 370 - Winter 00 - Combinational Logic - 51

Karnaugh maps: don’t cares (cont’d)

1 f(ABCD) = xm(1,3,5,79) + d(6,12,13)

1 f=AD+BCD without don't cares
1 f=AD+CD with don't cares
A

by using don't care as a "1"
R R / a 2-cube can be formed

rather than a 1-cube to cover
this node

don’t cares can be treated as

0| X |00 1s or Os

depending on which is more
advantageous

CSE 370 - Winter 00 - Combinational Logic - 50

Design example: two-bit comparator (cont’d)

K-map for LT K-map for EQ K-map T

LT = ABD + AC + B'CD
EQ = ABCD + ABCD + ABCD + AB' CD’ = (Axnor C) » (B xnor D)
GT = BC'D + AC + ABD'

LT and GT are similar (flip A/C and B/D)

CSE 370 - Winter 00 - Combinational Logic - 52

Design example: two-bit comparator (cont’d)

A BCD

YIYIYY

two alternative
implementations of EQ
with and without XOR

==

XNOR is implemented with
) at least 3 simple gates
EQ
.

CSE 370 - Winter 00 - Combinational Logic - 53

EQ

bb

Design example: 2x2-bit multiplier

A2 A1 B2B1 P8 P4 P2 P1

000O0T/JO0O 0O 0 O

010 0 0 O

100 0 0 O

11 /0 0 0 0

Al gl > P1 01 g 0 8 8 8 0
— — 1 1
A2 P2 100 0 1 O
Bl —> P 1100 0 1 1
— — 1 0007 [0 0 0 O
B2 P 01]0 0 1 0
100 1 0 0

11 /0 1 1 0

1 1 00[0 0 0 O

block diagram 010 0 1 1

and 100 1 1 0

truth table 111 0 0 1

4-variable K-map
for each of the 4
output functions

CSE 370 - Winter 00 - Combinational Logic - 54

Design example: 2x2-bit multiplier (cont’d)

A2 A2
ol ol o] o |KmapforP8 K-map for P4 ololalo
P4 = A2B2B1"
°l0j9jo B1 +A2A1'B2 0l0)0]0 B1
0| o 0 NO w\‘m
B: P8 = A2A1B2B1 B
ojojolo 0| olu
T T
A2 A2
ol o] o] o |KmapforP2 KemapforP1l| o1 o [5| ¢
P1 =A1B1
of o |lalf1 0 1)l o
C_ Bl ! Bl
ol1]jo oflu]| 1o
B m'\ = A2A1B2 B
0 146 +A1B2BI’ ojo|o]o
1 +A2B2'B1 1
+A2A1B1

CSE 370 - Winter 00 - Combinational Logic - 55

Design example: BCD increment by 1 (cont’d)

Design example: BCD increment by 1

I8 14 12 11/08 04 02 O1

0 0 0 00 0 0 1

0 0 0 1/0 0 1 0

0 0 1 00 0 1 1

. BRI BEE

1 1 1

I o1 0 1 0 1]0 1 1 0
e 2 S O
11— > 04 i 0 0 0|1 0 0 1
8 —» — 08 1 0 0 1]/0 0 0 O
[i 0 1 0(X X X X

i 0 1 1(|X X X X

11 0 0(X X X X

i 1 0 1(|X X X X

block diagram % % % ? § § § §

and
truth table
4-variable K-map for each of

the 4 output functions

CSE 370 - Winter 00 - Combinational Logic - 56

Definition of terms for two-level simplification

1 Implicant
1 single element of ON-set or DC-set or any group of these elements that
can be combined to form a subcube
1 Prime implicant
1 implicant that can't be combined with another to form a larger subcube
1 Essential prime implicant
1 prime implicant is essential if it alone covers an element of ON-set
1 will participate in ALL possible covers of the ON-set
1 DC-set used to form prime implicants but not to make implicant essential
1 Objective:
1 grow implicant into prime implicants
(minimize literals per term)

1 cover the ON-set with as few prime implicants as possible
(minimize number of product terms)

CSE 370 - Winter 00 - Combinational Logic - 58

8 18
ofo uj o8 11 W x|| o
ojoxjol, 0 @j o,
o |G x| x 08=141211 +I81V o | x IMx]
2 04=1412+1411I'+ 141211
oo [x [o [[+ «
i 02=1812'11 + 1211 &
B O —
0 0 X 0 Q2 o1 Ll 1 X IJ
uj x oy oj o x|y,
oo |x|x o0 x| X
2 2
[1 1| x x] [1 1| x XW
4 F
CSE 370 - Winter 00 - Combinational Logic - 57
Examples to illustrate terms
A
0 FT 0 6 prime implicants:
— A'B'D, BC', AC, A'C'D, AB, B'CD
L) o], —
j J essential
0 1 1
oo |11 minimum cover: AC + BC' + A'B'D
A
5 prime implicants: 0|0 F 0
BD, ABC', ACD, A'BC, A'CD
essential
minimum cover: 4 essential implicants 0 M 0]

CSE 370 - Winter 00 - Combinational Logic - 59

Algorithm for two-level simplification

1 Algorithm: minimum sum-of-products expression from a Karnaugh map

Step 1: choose an element of the ON-set
Step 2: find "maximal” groupings of 1s and Xs adjacent to that element
| consider top/bottom row, left/right column, and corner adjacencies
| this forms prime implicants (number of elements always a power of 2)

Repeat Steps 1 and 2 to find all prime implicants

Step 3: revisit the 1s in the K-map
| if covered by single prime implicant, it is essential, and participates in
final cover
| 1s covered by essential prime implicant do not need to be revisited
Step 4: if there remain 1s not covered by essential prime implicants
| select the smallest number of prime implicants that cover the
remaining 1s

CSE 370 - Winter 00 - Combinational Logic - 60

Algorithm for two-level simplification (example)

A A
T EEES
0 1| 1|1 of 1| 1|1
D D
0 X | X |0 0| X|| X| 0
C C
0 1 0 1 o 1] o 1 0 1 0 1
2 primes around A'BC'D' 2 primes around ABC'D

x|[1] o] 1 x 1] o] 1
OIIID OIIID

aap®

0 of x| x|o o x| x|o
c c ¢
0 o t] of1 o 1] o1
3 primes around A:]B o' 2 essential prir:mes minimum cover (3|:prlm es)

CSE 370 - Winter 00 - Combinational Logic - 61

Combinational logic summary

1 Logic functions, truth tables, and switches
1 NOT, AND, OR, NAND, NOR, XOR, . . ., minimal set
1 Axioms and theorems of Boolean algebra
1 proofs by re-writing and perfect induction
1 Gate logic
1 networks of Boolean functions and their time behavior
1 Canonical forms
1 two-level and incompletely specified functions
1 Simplification
1 two-level simplification
1 Later
automation of simplification
multi-level logic
design case studies
time behavior

CSE 370 - Winter 00 - Combinational Logic - 62

