Combinational logic topics

- Logic functions, truth tables, and switches
 - I NOT, AND, OR, NAND, NOR, XOR, . . .
 - I minimal set
- Axioms and theorems of Boolean algebra
 - proofs by re-writing
 - proofs by perfect induction
- Gate logic
 - I networks of Boolean functions
- I time behavior
- Canonical forms
 - I two-level
 - I incompletely specified functions
- Simplification
 - Boolean cubes and Karnaugh maps
 - I two-level simplification

CSE 370 - Winter 00 - Combinational Logic - 1

Possible logic functions of two variables

- There are 16 possible functions of 2 input variables:
 - I in general, there are 2**(2**n) functions of n inputs

Cost of different logic functions

- Different functions are easier or harder to implement
 - each has a cost associated with the number of switches needed
 - 0 (F0) and 1 (F15): require 0 switches, directly connect output to low/high
 - X (F3) and Y (F5): require 0 switches, output is one of inputs
 - ▮ X' (F12) and Y' (F10): require 2 switches for "inverter" or NOT-gate
 - I $\,$ X nor Y (F4) and X nand Y (F14): require 4 switches
 - I X or Y (F7) and X and Y (F1): require 6 switches I X = Y (F9) and $X \oplus Y$ (F6): require 16 switches
 - I thus, because NOT, NOR, and NAND are the cheapest they are the functions we implement the most in practice

CSE 370 - Winter 00 - Combinational Logic -

Minimal set of functions

- Can we implement all logic functions from NOT, NOR, and NAND?
 - For example, implementing X and Y is the same as implementing not (X nand Y)
- \blacksquare In fact, we can do it with only NOR or only NAND
 - I NOT is just a NAND or a NOR with both inputs tied together

I and NAND and NOR are "duals",

that is, its easy to implement one using the other

 $\begin{array}{lll} X \; \underline{nand} \; Y & \equiv & \underline{not} \; (\; \underline{(not} \; X) \; \underline{nor} \; \underline{(not} \; Y) \;) \\ X \; \underline{nor} \; Y & \equiv & \underline{not} \; (\; \underline{(not} \; X) \; \underline{nand} \; \underline{(not} \; Y) \;) \end{array}$

- But let's not move too fast . . .
 - l let's look at the mathematical foundation of logic

CSE 370 - Winter 00 - Combinational Logic - 4

An algebraic structure

- An algebraic structure consists of
 - I a set of elements B
 - binary operations { + , }
 and a unary operation { ' }
 - such that the following axioms hold:

CSE 370 - Winter 00 - Combinational Logic - 5

Boolean algebra

- Boolean algebra
 - B = {0, 1}
 - + is logical OR, is logical AND
 - 'is logical NOT
- All algebraic axioms hold

Logic functions and Boolean algebra

■ Any logic function that can be expressed as a truth table can be written as an expression in Boolean algebra using the operators: ', +, and •

0 0 1 1	Y 0 1 0 1	0 0 0 1	Υ		X 0 0 0 0 1 1 1 1 1 1 1	1 1	X' • Y 0 1 0 0
X 0 0 1 1	Y 0 1 0 1	1 1 0 0	1 0 1 0	X • Y 0 0 0	X' • Y 1 0 0	1 0 0 1	$(X \bullet Y) + (X' \bullet Y') = X = Y$
., Y are	Boo	lean	alge b	ra varial	bles		Boolean expression that is true when the variables X and Y have the same value and faise, otherwise

CSE 370 - Winter 00 - Combinational Logic - 7

Axioms and theorems of Boolean algebra

■ identity 1. X + 0 = X

■ null

1D. X • 1 = X

2. X + 1 = 1

2D. X • 0 = 0

■ idempotency: 3. X + X = X

3D. $X \cdot X = X$

■ involution: 4. (X')' = X

■ complementarity:

5 X + X = 1

5D. X • X' = 0

■ commutativity: 6. X + Y = Y + X

■ associativity:

6D. $X \cdot Y = Y \cdot X$

7. (X + Y) + Z = X + (Y + Z) 7D. $(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$

CSE 370 - Winter 00 - Combinational Logic - 8

Axioms and theorems of Boolean algebra (cont'd)

■ distributivity:

8. $X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$ 8D. $X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$

■ uniting: 9. X • Y + X • Y' = X

9D. $(X + Y) \cdot (X + Y') = X$

■ absorption:

 Josephion:
 10. $X + X \cdot Y = X$ 10D. $X \cdot (X + Y) = X$

 11. $(X + Y') \cdot Y = X \cdot Y$ 11D. $(X \cdot Y') + Y = X + Y$

ctoring: 12. $(X + Y) \cdot (X' + Z) =$ 16D. $X \cdot Y + X' \cdot Z =$ $(X + Z) \cdot (X \cdot Y) \cdot (X$

(X + Z) • (X' + Y) 13. $(X \cdot Y) + (Y \cdot Z) + (X' \cdot Z) = 17D. (X + Y) \cdot (Y + Z) \cdot (X' + Z) = (X + Y) \cdot (X' + Z)$

CSE 370 - Winter 00 - Combinational Logic - 9

Axioms and theorems of Boolean algebra (cont')

■ de Morgan's:

14. (X + Y + ...)' = X' • Y' • ... 12D. (X • Y • ...)' = X' + Y' + ...

 $\begin{tabular}{ll} \blacksquare & generalized de Morgan's: \\ & 15. \ f'(X1,X2,...,Xn,0,1,+,\bullet) = \ f(X1',X2',...,Xn',1,0,\bullet,+) \\ \end{tabular}$

■ establishes relationship between • and +

CSE 370 - Winter 00 - Combinational Logic - 10

Axioms and theorems of Boolean algebra (cont')

- Duality

 - a dual of a Boolean expression is derived by replacing
 by +, + by •, 0 by 1, and 1 by 0, and leaving variables unchanged
 - I any theorem that can be proven is thus also proven for its dual!
 - I a meta-theorem (a theorem about theorems)
- duality: 16. X + Y + ... ⇔ X Y ...
- $\begin{tabular}{ll} \blacksquare & generalized duality: \\ & 17. \ f \ (X1,X2,\dots,Xn,0,1,+,\bullet) \Leftrightarrow f(X1,X2,\dots,Xn,1,0,\bullet,+) \\ \end{tabular}$
- Different than deMorgan's Law
 - I this is a statement about theorems
 - I this is not a way to manipulate (re-write) expressions

CSE 370 - Winter 00 - Combinational Logic - 11

Proving theorems (rewriting)

■ Using the axioms of Boolean algebra:

 $X \cdot Y + X \cdot Y' = X \cdot (Y + Y')$ $X \cdot (Y + Y') = X \cdot (1)$ $X \cdot (1) = X \Rightarrow$ distributivity (8) complementarity (5) identity (1D)

■ e.g., prove the theorem: $X + X \bullet Y = X$

Waveform view of logic functions I Just a sideways truth table I but note how edges don't line up exactly I it takes time for a gate to switch its output! time 100 200 X Y Not (X & Y) Not (X & Y) X & Y Not (X & Y) X & Y Not (X + Y) X & Y Not

Which realization is best?

- Reduce number of inputs
 - I literal: input variable (complemented or not)
 - I can approximate cost of logic gate as 2 transitors per literal
 - I why not count inverters?
 - ${\rm I\hspace{-.1em}I\hspace{-.1e$
 - I smaller circuits
 - I fewer inputs implies faster gates
 - I gates are smaller and thus also faster
 - I fan-ins (# of gate inputs) are limited in some technologies
- Reduce number of gates
 - I fewer gates (and the packages they come in) means smaller circuits
 - I directly influences manufacturing costs

CSE 370 - Winter 00 - Combinational Logic - 2

Which is the best realization? (cont'd)

- Reduce number of levels of gates
 - I fewer level of gates implies reduced signal propagation delays
 - I minimum delay configuration typically requires more gates
 I wider, less deep circuits
- $\blacksquare \quad \text{How do we explore tradeoffs between increased circuit delay and size?}$
 - automated tools to generate different solutions
 - I logic minimization: reduce number of gates and complexity
 - I logic optimization: reduction while trading off against delay

CSE 370 - Winter 00 - Combinational Logic - 2:

Are all realizations equivalent?

- Under the same input stimuli, the three alternative implementations have almost the same waveform behavior
 - delays are different
 - I glitches (hazards) may arise
 - I variations due to differences in number of gate levels and structure
- The three implementations are functionally equivalent

Implementing Boolean functions

- Technology independent
 - I canonical forms
 - I two-level forms
 I multi-level forms
- Technology choicespackages of a few gates
 - regular logic
 - I two-level programmable logic
 - multi-level programmable logic

Canonical forms

- Truth table is the unique signature of a Boolean function
- Many alternative gate realizations may have the same truth table
- Canonical forms
 - I standard forms for a Boolean expression
 - I provides a unique algebraic signature

CSE 370 - Winter 00 - Combinational Logic - 25

Sum-of-products canonical form (cont'd)

- Product term (or minterm)
 - I ANDed product of literals input combination for which output is true
 - each variable appears exactly once, in true or inverted form (but not both)

```
minterms
                                      E in canonical form:
               A'B'C' m0
A'B'C m1
A'BC' m2
         0
                                         F(A, B, C) = \Sigma m(1,3,5,6,7)
= m1 + m3 + m5 + m6 + m7
                                                         = A'B'C + A'BC + AB'C + ABC' + ABC
   1
0
0
         1
0
               A'BC
                         m3
               AB'C' m4
AB'C m5
ABC' m6
                                      canonical form ≠ minimal form
         1 ABC
0 ABC
1 ABC
                                         F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'
= (A'B' + A'B + AB' + AB)C + ABC'
= ((A' + A)(B' + B))C + ABC'
                                                          = C + ABC + C
short-hand notation for
                                                          = AB + C
minterms of 3 variables
```

Product-of-sums canonical form

- Also known as conjunctive normal form
- Also known as maxterm expansion

CSE 370 - Winter 00 - Combinational Logic - 28

F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

Product-of-sums canonical form (cont'd)

- Sum term (or maxterm)
 - I ORed sum of literals input combination for which output is false
 - each variable appears exactly once, in true or inverted form (but not both)

```
 \begin{array}{ll} F \text{ in canonical form:} \\ F(A, B, C) &= \Pi M(0,2,4) \\ &= M0 \bullet M2 \bullet M4 \\ &= \left(A + B + C\right)\left(A + B' + C\right)\left(A' + B + C\right) \end{array} 
                    maxterms
                    Maxterms

A+B+C

A+B+C

A+B+C

A+B+C

A'+B+C

A'+B+C

A'+B+C

A'+B'+C
                                               MO
              0
   0
             1 0
    1
                                                M2
                                                М3
    0
                                              M4
M5
                                                                canonical form ≠ minimal form
                                                                    F(A, B, C) = (A + B + C)(A + B + C)(A' + B + C)

= (A + B + C)(A + B' + C)

= (A + B + C)(A' + B + C)

= (A + C)(B + C)
             0
                                               M6
                                                <u>M</u>7
short-hand notation for
maxterms of 3 variables
```

CSE 370 - Winter 00 - Combinational Logic - 29

S-o-P, P-o-S, and de Morgan's theorem

- Sum-of-products
 - F' = A'B'C' + A'BC' + AB'C'
- Apply de Morgan's

■ Product-of-sums

■ F' = (A + B + C') (A + B' + C') (A' + B + C') (A' + B' + C) (A' + B' + C')

■ Apply de Morgan's

(F')' = ((A + B + C')(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C'))'
 F = A'B'C + A'BC + AB'C + ABC' + ABC

Mapping between canonical forms

- Minterm to maxterm conversion
- I use maxterms whose indices do not appear in minterm expansion
- e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7) = \Pi M(0,2,4)$
- Maxterm to minterm conversion
 - I use minterms whose indices do not appear in maxterm expansion
 - e.g., $F(A,B,C) = \Pi M(0,2,4) = \Sigma m(1,3,5,6,7)$
- Minterm expansion of F to minterm expansion of F
 - I use minterms whose indices do not appear
 - \blacksquare e.g., $F(A,B,C) = \Sigma m(1,3,5,6,7)$ $F'(A,B,C) = \Sigma m(0,2,4)$
- Maxterm expansion of F to maxterm expansion of F'
 - I use maxterms whose indices do not appear
 - \blacksquare e.g., $F(A,B,C) = \Pi M(0,2,4)$ $F'(A,B,C) = \Pi M(1,3,5,6,7)$

CSE 370 - Winter 00 - Combinational Logic - 33

Incompletely specified functions ■ Example: binary coded decimal increment by 1 ■ BCD digits encode the decimal digits 0 – 9 in the bit patterns 0000 – 1001 off-set of W don't care (DC) set of W these inputs patterns should never be encountered in practice — "don't care" about associated output values, can be exploited in minimization

Notation for incompletely specified functions

- Don't cares and canonical forms
 - so far, only represented on-set
 - I also represent don't-care-set
 - need two of the three sets (on-set, off-set, dc-set)
- Canonical representations of the BCD increment by 1 function:
 - I = M0 + M2 + M4 + M6 + M8 + d10 + d11 + d12 + d13 + d14 + d15
 - $I = \Sigma [m(0,2,4,6,8) + d(10,11,12,13,14,15)]$
 - I Z = M1 M3 M5 M7 M9 D10 D11 D12 D13 D14 D15
 - $I = \Pi [M(1,3,5,7,9) \cdot D(10,11,12,13,14,15)]$

CSE 370 - Winter 00 - Combinational Logic - 35

Simplification of two-level combinational logic

- Finding a minimal sum of products or product of sums realization
 - exploit don't care information in the process
- Algebraic simplification
 - I not an algorithmic/systematic procedure
 - I how do you know when the minimum realization has been found?
- Computer-aided design tools
 - precise solutions require very long computation times, especially for functions with many inputs (> 10)
 heuristic methods employed "educated guesses" to reduce amount of
 - computation and yield good if not best solutions
- Hand methods still relevant
 - $\hbox{{\bf I}} \quad \hbox{to understand automatic tools and their strengths and weaknesses}$
 - ability to check results (on small examples)

CSE 370 - Winter 00 - Combinational Logic - 37

m-dimensional cubes in a n-dimensional Boolean space I In a 3-cube (three variables): I a 0-cube, i.e., a single node, yields a term in 3 literals I a 1-cube, i.e., a line of two nodes, yields a term in 2 literals I a 2-cube, i.e., a plane of four nodes, yields a term in 1 literal I a 3-cube, i.e., a cube of eight nodes, yields a constant term "1" I In general, I an m-subcube within an n-cube (m < n) yields a term with n – m literals

Karnaugh maps

- Flat map of Boolean cube
 - wrap–around at edges
 - I hard to draw and visualize for more than 4 dimensions
 - virtually impossible for more than 6 dimensions
- $\blacksquare \quad \text{Alternative to truth-tables to help visualize adjacencies}$
 - I guide to applying the uniting theorem
 - on-set elements with only one variable changing value are adjacent unlike the situation in a linear truth-table

ВА	0	1	
0	0 1	2 1	
1	0	3 0	

Α	В	F
0	0	1
0	1	0
1	0	1
1	1	0

CSE 370 - Winter 00 - Combinational Logic - 43

Adjacencies in Karnaugh maps I Wrap from first to last column I Wrap top row to bottom row

Definition of terms for two-level simplification

- Implicant
 - I single element of ON-set or DC-set or any group of these elements that can be combined to form a subcube
- Prime implicant
 - I implicant that can't be combined with another to form a larger subcube
- Essential prime implicant
 - ${\rm 1\hspace{-0.9mm}I} \quad \hbox{prime implicant is essential if it alone covers an element of ON-set}$
 - will participate in ALL possible covers of the ON-set
 - ${\rm I\hspace{-.1em}I\hspace{-.1em}DC\text{-}set} \ used \ to \ form \ prime \ implicants \ but \ not \ to \ make \ implicant \ essential$
- Objective:
 - grow implicant into prime implicants (minimize literals per term)
 - I cover the ON-set with as few prime implicants as possible (minimize number of product terms)

CSE 370 - Winter 00 - Combinational Logic - 58

Algorithm for two-level simplification

- Algorithm: minimum sum-of-products expression from a Karnaugh map
 - Step 1: choose an element of the ON-set
 - Step 2: find "maximal" groupings of 1s and Xs adjacent to that element
 - I consider top/bottom row, left/right column, and corner adjacencies
 - I this forms prime implicants (number of elements always a power of 2)
 - Repeat Steps 1 and 2 to find all prime implicants
 - \blacksquare Step 3: revisit the 1s in the K-map
 - l if covered by single prime implicant, it is essential, and participates in final cover
 - I 1s covered by essential prime implicant do not need to be revisited
 - Step 4: if there remain 1s not covered by essential prime implicants
 I select the smallest number of prime implicants that cover the
 remaining 1s

Combinational logic summary

- Logic functions, truth tables, and switches
 NOT, AND, OR, NAND, NOR, XOR, . . . , minimal set
- Axioms and theorems of Boolean algebra
- proofs by re-writing and perfect induction
- Gate logic
 - I networks of Boolean functions and their time behavior
- Canonical forms
 - I two-level and incompletely specified functions
- Simplification
 - I two-level simplification
- Later
 - I automation of simplification
 - multi-level logic
 - I design case studies
 - time behavior